Analysis of Algorithms
Spring 2016
Course Information

Amotz Bar-Noy
Department of Computer and Information Science
Brooklyn College

February 2, 2016
Instructor — Amotz Bar-Noy

- **E-mail:** amotz@sci.brooklyn.cuny.edu.
- **Internet:** http://www.sci.brooklyn.cuny.edu/~amotz/bc-algorithms.html
- **Office Hours:** Tuesday 3:00pm–4:00pm, Room 2112a.
- **Class Hours:** Tuesday 6:05pm–8:00pm, Room 236NE.
Prerequisite Courses and Knowledge

- A course in data structure
 - Computer and Information Science 6006X [622X]
- A course in discrete structures.
 - 6004X [611X]
Textbooks

Main Textbook

- 2nd edition and even 1st edition are also good.
Textbooks

Main Textbook
 - 2nd edition and even 1st edition are also good.

Other Books
- “Algorithm Design,” Kleinberg and Tardos, Addison Wesley.
- “Algorithm Design,” Goodrich and Tamassia, Wiley.
- “Introduction to Algorithms a Creative Approach,” Manber, Addison-Wesley.
Online Resources

- **Lecture notes from MIT:**

- **Problems on Algorithms:**

 http://larc.unt.edu/ian/books/free/poa.pdf

- **Mathematics for Computer Science:**

 - http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/
Tentative Syllabus

- Introduction; Mathematical Background; Analysis of Algorithms.
- Searching; Order Statistics; Sorting.
- Divide & Conquer; Greedy Algorithms; Dynamic Programming.
- Graphs; Graph Traversals; Minimum Spanning Trees.
- NP-Completeness.
Tentative Schedule

01. 02/02/2016 Mathematical Background
02. 02/16/2016 Analysis of Algorithms
03. 02/23/2016 Order Statistics
04. 03/01/2016 Sorting
05. 03/08/2016 Sorting Networks
06. 03/15/2016 **Midterm Exam**
07. 03/22/2016 Divide and Conquer
08. 03/29/2016 Greedy Algorithms
09. 04/05/2016 Dynamic Programming
10. 04/12/2016 Graphs
11. 04/19/2016 Graph Traversals
12. 05/03/2016 Minimum Spanning Trees
13. 05/10/2016 NP-Completeness
14. 05/17/2016 To Be Determined
15. 05/24/2016 **Final Exam**
Grading

Percentages

- This is only a guide, percentages and rules may change during the semester as needed.

- The final grade will be composed of the following 4 components:
 - \(\approx 40\% - 60\% \) final exam.
 - \(\approx 20\% - 30\% \) mid-term exam.
 - \(\approx 0\% - 20\% \) quizzes.
 - \(\approx 10\% - 10\% \) assignments.

General Formula

\[
\text{final}\% = 100 - \text{midterm}\% - \text{assignments}\% - \text{quizzes}\%
\]

Final grade dominates: if X's grade is less than final exam's grade, then X's grade becomes final exam's grade!
Grading

Percentages

- This is only a **guide**, percentages and rules may change during the semester as needed.
- The final grade will be composed of the following 4 components:
 - ≈ 40% – 60% final exam.
 - ≈ 20% – 30% mid-term exam.
 - ≈ 0% – 20% quizzes.
 - ≈ 10% – 10% assignments.

General Formula

- final% = 100 - midterm% - assignments% - quizzes%
- Final grade dominates: if X’s grade is less than final exam’s grade, then X’s grade becomes final exam’s grade!
Quizzes

- There could be two types of quizzes:
 - At the beginning of the class to check what you learned in the previous week.
 - At the end of the class to check what you learned during the class.

- There might be no announcements regrading quizzes.

- The number of quizzes has not yet been determined.
Answering a question

- Answer a question in an exam, in a quiz, or in an assignment:
 - Only within the given space for the answer.
 - Using a readable text with normal size font.
 - You get 20% of the value if you leave the answer blank.
 - You get no points for a wrong answer.
Preparing Assignments

- Type the answers or use a *readable* hand writing.
- Do the assignments alone if you can.
- Get help if necessary.
- You **must** understand everything you write.
Reading and Practicing Assignment

- Refresh your algorithmic knowledge and mathematical foundations.
 - In the second edition read Chapters 1–4 (without 4.4) and Appendices A–D (without C.5). In the first edition read Chapters 1–5 (without 4.4).

- Practice by solving some or all of the problems in the books and online resources.
 - Watch online videos about “Mathematics for Computer Science.” [http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/]
Refresh your algorithmic knowledge and mathematical foundations.

- In the second edition read Chapters 1–4 (without 4.4) and Appendices A–D (without C.5). In the first edition read Chapters 1–5 (without 4.4).

Practice by solving some or all of the problems in the books and online resources.

- Solve problems in Chapters 1–5 of the online book “Problems on Algorithms,” by Ian Parberry.

 http://larc.unt.edu/ian/books/free/poa.pdf

Watch online videos about “Mathematics for Computer Science.”

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/
Refresh your algorithmic knowledge and mathematical foundations.

- In the second edition read Chapters 1–4 (without 4.4) and Appendices A–D (without C.5). In the first edition read Chapters 1–5 (without 4.4).

Practice by solving some or all of the problems in the books and online resources.

- Solve problems in Chapters 1–5 of the online book “Problems on Algorithms,” by Ian Parberry.
 http://larc.unt.edu/ian/books/free/poa.pdf

Watch online videos about “Mathematics for Computer Science.”

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/