Greedy Algorithms

- **Greedy algorithms** make decisions that “seem” to be the best following some greedy criteria.

- In **Off-Line** problems:
 - The whole input is known in advance.
 - Possible to do some preprocessing of the input.
 - Decisions are irrevocable.

- In **Real-Time** and **On-Line** problems:
 - The present cannot change the past.
 - The present cannot rely on the un-known future.
How and When to use Greedy Algorithms?

- **Initial solution:** Establish trivial solutions for a problem of a small size. Usually $n = 0$ or $n = 1$.

- **Top bottom procedure:** For a problem of size n, look for a greedy decision that reduces the size of the problem to some $k < n$ and then, apply **recursion**.

- **Bottom up procedure:** Construct the solution for a problem of size n based on some greedy criteria applied on the solutions to the problems of size $k = 1, \ldots, n - 1$.
The Coin Changing Problem

Input:
- Integer coin denominations $d_n > \cdots > d_2 > d_1 = 1$.
- An integer amount to pay: A.

Output: Number of coins n_i for each denomination d_i to get the exact amount.
- $A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.

Goal: Minimize total number of coins.
- $N = n_n + \cdots + n_2 + n_1$.

Remark: There is always a solution with $N = A$ since $d_1 = 1$.
Examples

- **USA:** $d_6 = 100$, $d_5 = 50$, $d_4 = 25$, $d_3 = 10$, $d_2 = 5$, $d_1 = 1$.
 - $A = 73 = 2 \cdot 25 + 2 \cdot 10 + 3 \cdot 1$.
 - $N = 2 + 2 + 3 = 7$.

- **Old British:** $d_3 = 240$, $d_2 = 20$, $d_1 = 1$.
 - $A = 307 = 1 \cdot 240 + 3 \cdot 20 + 7 \cdot 1$.
 - $N = 1 + 3 + 7 = 11$.
Greedy Solution

- **Idea:** Use the largest possible denomination and update A.

- **Implementation:**

 Coin-Changing ($d_n > \cdots > d_2 > d_1 = 1$)

  ```
  for i = n downto 1
      n_i = \lfloor A/d_i \rfloor
      A = A \mod d_i = A - n_i d_i
  Return(N = n_n + \cdots + n_2 + n_1)
  ```

- **Correctness:** $A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.

- **Complexity:** $\Theta(n)$ division and mod integer operations.
Optimality

- **Greedy** is optimal for the USA system.

A coin system for which Greedy is not optimal:

\[d_3 = 4, \quad d_2 = 3, \quad d_1 = 1\]

Greedy:

\[6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3.\]

Optimal:

\[6 = 2 \cdot 3 \Rightarrow N = 2.\]

A coin system for which Greedy is very "bad":

\[d_3 = x + 1, \quad d_2 = x, \quad d_1 = 1\]

\[\text{Greedy:}\]

\[2x = 1 \cdot (x + 1) + (x - 1) \cdot 1 \Rightarrow N = x.\]

Optimal:

\[2x = 2 \cdot x \Rightarrow N = 2.\]
Optimality

- **Greedy** is optimal for the USA system.

- A coin system for which **Greedy** is not optimal:
 - $d_3 = 4$, $d_2 = 3$, $d_1 = 1$ and $A = 6$:
 - **Greedy**: $6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3$.
 - **Optimal**: $6 = 2 \cdot 3 \Rightarrow N = 2$.
Greedy is optimal for the USA system.

A coin system for which Greedy is not optimal:
- \(d_3 = 4, d_2 = 3, d_1 = 1\) and \(A = 6\):
 - Greedy: \(6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3\).
 - Optimal: \(6 = 2 \cdot 3 \Rightarrow N = 2\).

A coin system for which Greedy is very “bad”:
- \(d_3 = x + 1, d_2 = x, d_1 = 1\) and \(A = 2x\):
 - Greedy: \(2x = 1 \cdot (x + 1) + (x - 1) \cdot 1 \Rightarrow N = x\).
 - Optimal: \(2x = 2 \cdot x \Rightarrow N = 2\).
Efficiency

- **Optimal solution:** Check all possible combinations.
 - Not a polynomial time algorithm.

- **Another optimal solution:** Polynomial in both n and A.
 - Not a strongly polynomial time algorithm.

- **Objective:**
 - Find a solution that is polynomial only in n.
 - Probably impossible!?
The Knapsack Problem

Input:

- A thief enters a store and finds n items I_1, \ldots, I_n.
- The value of item I_i is $v(I_i)$ and its weight is $w(I_i)$.
 - Both are positive integers.
- The thief can carry at most weight W.
- The thief either takes all of item I_i or doesn’t take item I_i.
The Knapsack Problem

Input:
- A thief enters a store and finds n items I_1, \ldots, I_n.
- The value of item I_i is $v(I_i)$ and its weight is $w(I_i)$.
 - Both are positive integers.
- The thief can carry at most weight W.
- The thief either takes all of item I_i or doesn’t take item I_i.

Goal: Carry items with maximum total value.
- Which are these items?
- What is their total value?
A General Greedy Scheme

- **Order** the items according to some **greedy criterion**.
 - Assume this order is J_1, J_2, \ldots, J_n.
 - Assume J_1 is the most desired item and J_n is the least desired item.

If J_1 is not too heavy ($w(J_1) \leq W$):
- **Take** item J_1.
- **Continue recursively** with J_2, J_3, \ldots, J_n and updated maximum weight $W - w(J_1)$.

If J_1 is too heavy ($w(J_1) > W$):
- **Ignore** item J_1.
- **Continue recursively** with J_2, J_3, \ldots, J_n and the same maximum weight W.
A General Greedy Scheme – Implementation

Non-Recursive Knapsack \((l_1, \ldots, l_n, w(\cdot), v(\cdot), W)\)

Let \(J_1, \ldots, J_n\) be the new order on the items.

\[S = \emptyset \quad (* \text{the set of items the thief takes} *) \]
\[V = 0 \quad (* \text{the value of these items} *) \]

for \(i = 1\) to \(n\)

if \(w(J_i) \leq W\) then

\[S = S \cup \{J_i\} \]
\[V = V + v(J_i) \]
\[W = W - w(J_i) \]

Return \((S, V)\)
Greedy Criteria

Greedy criterion I: Order the items by their value from the most expensive to the cheapest.

Greedy criterion II: Order the items by their weight from the lightest to the heaviest.

Greedy criterion III: Order the items by their ratio of value over weight from the largest ratio to the smallest ratio.
The three criteria are not optimal

- **Counter example for Greedy-by-Value and Greedy-by-Ratio:**
 - 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - **Optimal** takes items I_2 and I_3 for a profit of 12.
 - **Greedy-by-Value** or **Greedy-by-Ratio** take only item I_1 for a profit of 10.
The three criteria are not optimal

- **Counter example for Greedy-by-Value and Greedy-by-Ratio:**
 - 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - **Optimal** takes items I_2 and I_3 for a profit of 12.
 - **Greedy-by-Value** or **Greedy-by-Ratio** take only item I_1 for a profit of 10.

- **Counter example for Greedy-by-Weight:**
 - 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 13 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - **Optimal** takes only item I_1 for a profit of 13.
 - **Greedy-by-Weight** takes items I_2 and I_3 for a profit of 12.
Very Bad Counter Examples for Criteria I and II

Counter example for Greedy-by-Value:

- \(n \) items and maximum weight is \(W \). Weights and values are: \(I_1 = \langle W, 2 \rangle, I_2 = \langle 1, 1 \rangle, \ldots, I_3 = \langle 1, 1 \rangle \).
- **Optimal** takes items \(I_2, \ldots, I_n \) for a profit of \(n - 1 \).
- **Greedy-by-Value** takes only item \(I_1 \) for a profit of 2.
- The ratio is \((n - 1)/2 \).
Very Bad Counter Examples for Criteria I and II

Counter example for Greedy-by-Value:

- \(n \) items and maximum weight is \(W \). Weights and values are:
 \[l_1 = \langle W, 2 \rangle, \ l_2 = \langle 1, 1 \rangle, \ldots, l_3 = \langle 1, 1 \rangle. \]
- **Optimal** takes items \(l_2, \ldots, l_n \) for a profit of \(n - 1 \).
- **Greedy-by-Value** takes only item \(l_1 \) for a profit of 2.
- The ratio is \((n - 1)/2\).

Counter example for Greedy-by-Weight:

- 2 items and maximum weight is 2. Weights and values are:
 \[l_1 = \langle 1, 1 \rangle \text{ and } l_2 = \langle 2, x \rangle \text{ for a very large } x. \]
- **Optimal** takes item \(l_2 \) for a profit of \(x \).
- **Greedy-by-Weight** takes item \(l_1 \) for a profit of 1.
- The ratio is \(x \).
Counter example for Greedy-by-Ratio:

- 2 items and maximum weight is W. Weights and values are: $I_1 = \langle 1, 2 \rangle$ and $I_2 = \langle W, W \rangle$.
- **Optimal** takes items I_2 for a profit of W.
- **Greedy-by-Ratio** takes item I_1 for a profit of 2.
- The ratio is almost $\frac{W}{2}$.
Counter example for Greedy-by-Ratio:

- 2 items and maximum weight is \(W \). Weights and values are:
 \(I_1 = 1 \times 2 \) and \(I_2 = W \times W \).
- **Optimal** takes items \(I_2 \) for a profit of \(W \).
- **Greedy-by-Ratio** takes item \(I_1 \) for a profit of 2.
- The ratio is almost \(\frac{W}{2} \).

A 1/2 guaranteed approximation algorithm:

- **Greedy-by-Ratio** guarantees half of the profit of **Optimal** with a tweak.
- Select either the output of greedy or the one item with the maximum value whose weight is at most \(W \).
The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \leq p_i \leq 1$ of item l_i:
 - Its value is $p_i v(l_i)$.
 - Its weight is $p_i w(l_i)$.
The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \leq p_i \leq 1$ of item I_i:
 - Its value is $p_i v(I_i)$.
 - Its weight is $p_i w(I_i)$.

Theorem: Greedy-by-Ratio is optimal.
Proof

- Assume that **Greedy-by-Ratio** fails on the input I_1, \ldots, I_n and the weight W.

- Let the portions taken by **Optimal** be p_1, \ldots, p_n.
 - $p_i = 1$: all of item I_i is taken.
 - $p_i = 0$: none of item I_i is taken.
 - $0 < p_i < 1$: some but not all of item I_i is taken.

- Since **Greedy-by-Ratio** fails, there exist I_i and I_j such that:
 - $\frac{v(I_i)}{w(I_i)} > \frac{v(I_j)}{w(I_j)}$ and $p_i < 1$ and $p_j > 0$.

- Because each unit of weight of item I_i has more value than each unit of weight of item I_j, it is more profitable to take more of item I_i and less of item I_j.

- A **contradiction** to the optimality of **Optimal**.
The 0 − 1 Knapsack Problem

- **Optimal solution**: Check all possible sets of items.
 - Not a polynomial time algorithm.

- **Another optimal solution**: Polynomial in both n and W.
 - Not a strongly polynomial time algorithm.

- **Objective**:
 - Find a solution that is polynomial only in n.
 - Probably impossible!?
 - However, **Greedy-by-Ratio** produces “good” solutions.
The Activity-Selection Problem

- **Input:**
 - Activities A_1, \ldots, A_n that need the service of a common resource.
 - Activity A_i is associated with a time interval $[s_i, f_i)$ for $s_i < f_i$.
 - A_i needs the service from time s_i until just before time f_i.

- **Mutual Exclusion:** The resource serves at most one activity at any time.

- **Definition:** A_i and A_j are compatible if either $f_i \leq s_j$ or $f_j \leq s_i$.

- **Goal:** Find a maximum size set of compatible activities.
Example

- **Input:** 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.
Example

- **Input:** 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

- **A graphical representation:**

![Graphical representation of activities](https://via.placeholder.com/150)

The best solution:

![Best solution](https://via.placeholder.com/150)
Example

- **Input:** 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

- **A graphical representation:**

- **The best solution:**
Static vs. Dynamic Greedy

- **Static**: The *greedy* criterion is determined in advance and cannot be changed during the execution of the algorithm.

- **Dynamic**: The *greedy* criterion may be modified during the execution of the algorithm based on prior decisions.

- **Remark**: A static criterion is also a dynamic criterion.
A General Static Greedy Scheme

- **Maintain** a set S of the activities that have been selected so far.

- Initially, $S = \emptyset$ and at the end, S is an optimal solution.

- **Order** the activities following some greedy criterion and **consider** the activities according to this order.

- Let A be the current considered activity. If A is compatible with all the activities in S:
 - Then **add** A to S.
 - Else **ignore** A.

- **Continue** until there are no activities to consider.
A General Dynamic Greedy Scheme

- **Maintain** two sets of activities:
 - S those that have been selected so far.
 - R those that can still be selected.
 - Initially, $S = \emptyset$ and $R = \{A_1, \ldots, A_n\}$.
 - At the end, S is an **optimal** solution and $R = \emptyset$.

- **Select** a “good” activity A from R, following some greedy criterion.
- **Add** A to S.
- **Delete** from R the activities that are not compatible with activity A.
- **Continue** until R is empty.
Greedy Criteria

- **Four criteria:**
 - Prefer short activities.
 - Prefer activities intersecting few other activities.
 - Prefer activities that start earlier.
 - Prefer activities that terminate earlier.

- **Optimality:** Only the fourth criterion is optimal.

- **Remarks:**
 - All four criteria are static in their nature.
 - The second criterion has a dynamic version.
An Optimal Greedy Solution

Preprocessing \((A_1, \ldots, A_n)\)
- **Sort** the activities according to their finish time
- **Let** this order be \(A_1, \ldots, A_n\) \((i < j \Rightarrow f_i \leq f_j)\)

Greedy-Activity-Selector \((A_1, \ldots, A_n)\)
- \(S = \{A_1\}\) \((A_1\text{ terminates the earliest})\)
- \(j = 1\) \((A_j\text{ is the current selected activity})\)
 - **for** \(i = 2\) **to** \(n\) \((\text{scan all the activities})\)
 - **if** \(s_i \geq f_j\) \((\text{check compatibility})\)
 - **then** \((\text{select } A_i \text{ that is compatible with } S)\)
 - \(S = S \cup \{A_i\}\)
 - \(j = i\)
 - **else** \((A_i\text{ is not compatible})\)
 - **Return** \(S\)
Correctness and Complexity

- **Correctness:** By definition.

- **Complexity:**
 - The sorting can be done in $O(n \log n)$ time.
 - There are $O(1)$ operations per each activity.
 - All together: $O(n \log n) + n \cdot O(1) = O(n \log n)$ time.
Example - Input
Example - Output
Let T be an optimal set of activities.

Transform T to S preserving the size of T.

Let A_1, \ldots, A_n be ordered by their \textit{finish} time.

Let A_i be the first activity that is in T and not in S.

All the activities in T that finish before A_i are also in S.
Optimality

- $A_i \notin S \Rightarrow \exists A_j \in S$ that is not in \mathcal{T} in which $j < i$.

- A_j is compatible with all the activities in \mathcal{T} that finish before it since they are all in S.

- A_j is compatible with all the activities in \mathcal{T} that finish after A_i since it finishes before A_j.

Therefore, $\mathcal{T} \cup \{A_j\} \setminus \{A_i\}$ is a solution with the same size as \mathcal{T} and hence optimal.

- Continue this way until \mathcal{T} becomes S.
Another optimal solution with 4 activities.
A third optimal solution: after the first transformation.
Example

The greedy solution: after the second transformation.
Huffman Codes

Input:
- An alphabet of n symbols a_1, \ldots, a_n.
- A frequency f_i for each symbol a_i:
 - $\sum_{i=1}^{n} f_i = 1$.
- A File \mathcal{F} containing L symbols from the alphabet.
 - a_i appears exactly $n_i = f_i \cdot L$ times in \mathcal{F}.
Huffman Codes

Input:
- An alphabet of n symbols a_1, \ldots, a_n.
- A frequency f_i for each symbol a_i:
 - $\sum_{i=1}^{n} f_i = 1$.
- A File \mathcal{F} containing L symbols from the alphabet.
 - a_i appears exactly $n_i = f_i \cdot L$ times in \mathcal{F}.

Output:
- For symbol a_i, $1 \leq i \leq n$: A binary codeword w_i of length ℓ_i.
- A compressed (encoded) binary file \mathcal{F}' of \mathcal{F}.
Huffman Codes – Goals

- L' the length of \mathcal{F}' should be minimal.
- An efficient algorithm to find the n codewords.
 - Good polynomial running time: $O(n \log n)$.
- Efficient encoding and decoding of the file
 - Should be done in $O(B)$-time.
 - B is the size of the original file in bits.
Example

- A file with the alphabet \(a, b, c, d, e, f \) containing 100 symbols.
 - \(n_a = 45, n_b = 13, n_c = 12, n_d = 16, n_e = 9, n_f = 5 \).

- **Code I:**
 - \(w_a = 000, w_b = 001, w_c = 010, w_d = 011, w_e = 100, w_f = 101 \).
 - Length of encoded file is 300.

- **Code II:**
 - \(w_a = 0, w_b = 101, w_c = 100, w_d = 111, w_e = 1101, w_f = 1100 \).
 - Length of encoded file is 224
 - \(1 \cdot 45 + 3 \cdot 13 + 3 \cdot 12 + 3 \cdot 16 + 4 \cdot 9 + 4 \cdot 5 = 224 \).

- **Remark:** Code II is optimal, \(\approx 25\% \) better than code I.
Definition: A prefix free code is a code in which no codeword is a prefix of another codeword.

Examples: Both code I and code II are prefix free.

Proposition: A code in which the lengths of all the codewords is the same is a prefix free code.

Theorem: Always exists an optimal prefix free code.

Encoding: “Easy” using tables.

Decoding: By scanning the coded text once.
A code can be represented by a rooted and ordered binary tree with \(n \) leaves.

Each leaf stores a codeword.

The codeword corresponding to a leaf is defined by the unique path from the root to the leaf:

- 0 for going left.
- 1 for going right.
A leaf is represented by the symbol and its frequency.

An internal node is labelled by the sum of the frequencies of all the leaves in its subtree.
Proposition: The binary tree represents a prefix free code since a path to a leaf cannot be a prefix of any other path.

Complexity Parameters:
- \(f(x) \) the frequency of a leaf \(x \).
- \(\ell(x) \) the length of the path from the root to \(x \).

The cost of the tree is: \(B(T) = \sum_{\text{a leaf } x} (f(x) \cdot \ell(x)) \).
- \(B(T) \) is the average length of a codeword.

The length of the encoded file: \(\sum_{\text{a leaf } x} (n(x) \cdot \ell(x)) \).
Lemma: Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.
Lemma: Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

Proof:

Let z be an internal node with only one child y.

There are 2 cases:

Case I: z is the root.

Case II: z is not the root.
Case I

- z is the root: Make y the new root.
Case II

- z is not a root and p is its parent: Bypass z by making y the child of p.

Diagram:

```
    p
   / \   
  z   y
 / \   /
A   B C
```

```
    p
   /   
  y   
   /   
A B C
```
Proof

- In both cases:
 - $\ell(x)$ of all the leaves in the sub-tree rooted at z is reduced by 1.
 - These are the only changes.
 - As a result the cost of the tree is improved.
 - A contradiction to the optimality of the code.
Example: Code I

\[B(T) = 300 \]
Example: Improving Code I

\[B(T) = 3 \cdot 86 + 2 \cdot 14 = 286 \]
Huffman Algorithm

- **Construct** a coding tree bottom-up.
- **Maintain** a forest with n leaves in all of its trees. Each tree is optimal for its leaves.

Initially, there are n singleton trees in the forest. Each tree is a leaf.

The frequency of a tree is the sum of the frequencies of all of its leaves.

Greedy step:
- **Find** the two trees with the minimum frequencies.
- **Combine** them together into one tree.
 - The frequency of the new tree is the sum of the frequencies of the two combined trees.

- **Terminate** when there is only one tree in the forest.
Example
Example
Example

```
25
  c:12
  b:13

30
  14
    f:5
    e:9

55
  25
    c:12
    b:13
  30
    14
      f:5
      e:9
```

Amotz Bar-Noy (CUNY) Greedy Algorithms Spring 2012 51 / 62
Example
Huffman Code Animation

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/huffman.html
Correctness

- Huffman algorithm generates a binary tree with n leaves.
- A binary tree represents a prefix free code.
A forest of binary trees.

- Initially, the forest contains n singleton trees.
- At the end, the forest contains one tree.

The frequencies of the trees in the forest are maintained in a priority queue Q.

- Initially, the queue contains the n original frequencies.
- At the end, the queue contains one frequency which is the sum of all original frequencies.
Implementation – Procedure

\textbf{Huffman}(\langle a_1, f_1 \rangle, \ldots, \langle a_n, f_n \rangle)

\textbf{Build-Queue}(\{f_1, \ldots, f_n\}, Q)

\textbf{for } i = 1 \textbf{ to } n - 1 \quad \text{(* the combination loop *)}

\hspace{1em} z = \text{Allocate-Node}() \quad \text{(* creating a new root *)}

\hspace{1em} x = \text{left}(z) = \text{Extract-Min}(Q)

\hspace{2em} (* lightest tree is the left sub-tree *)

\hspace{1em} y = \text{right}(z) = \text{Extract-Min}(Q)

\hspace{2em} (* second lightest tree is the right sub-tree *)

\hspace{1em} f(z) = f(x) + f(y) \quad \text{(* frequency of new root *)}

\hspace{1em} \text{Insert}(Q, f(z)) \quad \text{(* inserting the new root to the queue *)}

\textbf{return} \text{Extract-Min}(Q) \quad \text{(* last tree is the Huffman code *)}
Implement the priority queue with a **Binary Heap**.

The complexity of **Build-Queue** is $O(n)$.

The complexity of **Extract-Min** and **Insert** is $O(\log n)$.

The loop is executed $O(n)$ times.

The complexity of all the **Extract-Min** and the **Insert** operations is $O(n \log n)$.

The total complexity is: $O(n \log n)$.

Optimality - First Lemma

- Let \mathcal{A} be an alphabet.

- Let x and y be the two symbols in \mathcal{A} with the smallest frequencies.

Then, there exists an optimal tree in which:

- x and y are adjacent leaves (differ only in their last bit).
- x and y are the farthest leaves from the root.
Proof

Let \(z \) and \(w \) be adjacent leaves in an optimal tree that are the farthest from the root.

Exchanging \(z \) and \(w \) with \(x \) and \(y \) yields a tree with a smaller or equal cost.
Optimality - Second Lemma

Let T be an optimal tree for the alphabet \mathcal{A}.

Let x, y be adjacent leaves in T and let z be their parent.

Let \mathcal{A}' be \mathcal{A} with a new symbol z replacing x and y with frequency: $f(z) = f(x) + f(y)$.

Let T' be the tree T without the leaves x and y and with z as a new leaf.

Then T' is an optimal tree for the alphabet \mathcal{A}'.
Proof

Let T'' be an optimal tree with smaller cost than T'.

Replacing z in T'' with the two leaves x and y creates a tree with a smaller cost than T.

A contradiction to the optimality of T.
Optimality

- **Theorem:** Huffman code is optimal.

- **Proof by Induction:**
 - The first lemma implies that the first greedy step is a first step towards an optimal solution.
 - The second lemma justifies the inductive steps, applying again and again the first lemma.