Algorithms: Order Statistics

Amotz Bar-Noy

CUNY

Spring 2012
A Search Problem

- **Input:**
 - A key K.

- **Output:**
 - Does K appear in A? **YES** or **NO**.
 - If **YES**: an index i such that $A[i] = K$.

- **Method:**
 - **Comparisons** between K and the keys in the array.
A Search Game

- **Player 1:** Selects a number \(x \) in the range \([1..n]\).

- **Player 2:** Searches for \(x \) with **comparisons** \(x \leq i \) for some \(1 \leq i \leq n \).

- **Player 2 Goal:** Minimize number of comparisons until finding \(x \).
 - In the worst case or in the average case.
 - As a function of \(n \).
Equivalency

- \(x \leq i \) is “equivalent” to \(K \leq A[i] \).

- Algorithms can be converted from one model to another while preserving the complexity.

- It is easier to design algorithms in the search game model.

- It is easier to prove lower bounds in the search game model.
Sequential Search

Sequential-Search \((n,x)\)

\[
i = 0
\]

repeat

\[
i = i + 1
\]

until \(x \leq i\) (* comparison *)

return \(i\)
Sequential Search – Correctness

- **Induction hypothesis:**
 - \(i \leq x \leq n \) after \(i - 1 \) comparisons with a NO answer.

- **Termination:**
 - If \(x \leq i \) then necessarily \(x = i \).
 - Eventually \(x \leq n \).
n comparisons in the worst case when \(x = n \).

Possible \(n - 1 \) comparisons since there is no need for the last question when \(x = n \).

Could be only 1 comparison when \(x = 1 \).

\((n + 1)/2 \) comparisons on average for a random \(x \) selected with a uniform distribution from the range \([1..n]\):

\[
\frac{1}{n} \left(1 + 2 + \cdots + n\right) = \frac{1}{n} \cdot \frac{n(n + 1)}{2} = \frac{n + 1}{2}.
\]
Binary Search

Binary-Search \((n, x)\)

\[
\begin{align*}
\ell &= 1 \\
u &= n \\
\text{while } \ell < u \\
m &= \lfloor (u + \ell)/2 \rfloor \\
\text{if } x \leq m \quad (* \text{comparison} *) \\
\quad \text{then } u = m \\
\quad \text{else } \ell = m + 1 \\
\text{return } \ell
\end{align*}
\]
Binary Search – Correctness and Complexity

- Let \(u_i \) and \(\ell_i \) be the values of \(u \) and \(\ell \) after iteration \(i \) of the algorithm and let \(\Delta_i = u_i - \ell_i + 1 \).

- Initially \(u_0 = n \), \(\ell_0 = 1 \), and \(\Delta_0 = n \).

- **Claim:** \(\Delta_{i+1} \leq \left\lceil \frac{\Delta_i}{2} \right\rceil \) for \(i \geq 0 \).

- **Corollary:** \(\Delta_k = 1 \) for \(k = \lceil \log n \rceil \).
Let \(u_i \) and \(\ell_i \) be the values of \(u \) and \(\ell \) after iteration \(i \) of the algorithm and let \(\Delta_i = u_i - \ell_i + 1 \).

Initially \(u_0 = n \), \(\ell_0 = 1 \), and \(\Delta_0 = n \).

Claim: \(\Delta_{i+1} \leq \left\lceil \frac{\Delta_i}{2} \right\rceil \) for \(i \geq 0 \).

Corollary: \(\Delta_k = 1 \) for \(k = \lceil \log n \rceil \).

Correctness:
- By induction, always \(\ell \leq x \leq u \).
- At the end, \(\ell = u \) and therefore \(x = \ell = u \).

Complexity:
- \(\lceil \log n \rceil \): the number of iteration.
Adversary Player I

- **Does not** select \(x \) at the beginning of the game. Instead, maintains a set of candidates \(S \) for \(x \).

- Given a search question:
 - \(S(Y) \) – the set of candidates if the answer is **YES**.
 - \(S(N) \) – the set of candidates if the answer is **NO**.

- **Observation**: \(S = S(Y) \cup S(N) \).

- The adversary answer rule:
 - **YES** if \(|S(Y)| \geq |S(N)| \).
 - **NO** if \(|S(Y)| < |S(N)| \).
Example

Input: $n = 34$ (* $x \in [1..34]$ *).

Search:

- Q1: $x \leq 13 \Rightarrow \text{A1: NO}$ (* $x \in [14..34]$ *).
- Q2: $x \leq 26 \Rightarrow \text{A2: YES.}$ (* $x \in [14..26]$ *).
- Q3: $x \leq 18 \Rightarrow \text{A3: NO.}$ (* $x \in [19..26]$ *).
- Q4: $x \leq 23 \Rightarrow \text{A4: YES.}$ (* $x \in [19..23]$ *).
- Q5: $x \leq 20 \Rightarrow \text{A5: NO.}$ (* $x \in [21..23]$ *).
- Q6: $x \leq 22 \Rightarrow \text{A6: YES.}$ (* $x \in [21..22]$ *).
- Q7: $x \leq 21 \Rightarrow \text{A7: YES.}$ (* $x \in [21..21]$ *).

Output: $x = 21$.
Theorem

There exists \(1 \leq x \leq n \) for which the adversary forces the second player to ask at least \(\lceil \log_2 n \rceil \) comparisons.

Proof:

- Assume the second player asks \(k \) comparisons.
- Let \(S_i \) be the set of candidates after \(i \) comparisons.
- In particular, \(|S_0| = n \) and \(|S_k| = 1 \).
- By the observation, \(|S_{i+1}|/|S_i| \geq (1/2) \) for \(1 \leq i \leq k - 1 \).
- \(\lceil \log_2 n \rceil \) rounds are required to decrease \(n \) to 1 by halving.
- Therefore, \(k \geq \lceil \log_2 n \rceil \).
Remarks

- This is a **worst case** bound implying that no algorithm can guarantee less comparisons for all values of x.

- The theorem holds for a **stronger** Player 2. One that can ask any **YES/NO** questions. For example,
 - Is x even?
 - Is $x \in \{1, 2, 3, 5, 8, 13, 21, 34, 55\}$?
Find the Minimum Or the Maximum

- **Output:**
 - **Minimum:** A key K from the array such that $K \leq A[i]$ for $1 \leq i \leq n$.
 - **Maximum:** A key K from the array such that $K \geq A[i]$ for $1 \leq i \leq n$.

- **Method:** By comparisons between any two keys from the array.

- **Goal:** Minimize number of key comparisons.
Find the Minimum

Trivial-Find-Min\((A[1], \ldots, A[n])\)

\[K := A[1] \]
for \(i = 2\) to \(n\)

if \(K > A[i]\) (* comparison *)

then \(K := A[i]\)

return \(K\)

- **Correctness:**
 - \(K = \min\{A[1], \ldots, A[i]\}\) after round number \(i\).
 - \(K = \min\{A[1], \ldots, A[n]\}\) after \(n - 1\) rounds.

- **Complexity:** Exactly \(n - 1\) comparisons.
Adversary Strategy

- **Key idea**: Any entry in the array could be the minimum.

- **Data structure**:
 - B - Candidates for minimum.
 - \mathcal{R} - Cannot be minimum.
 - Initially: $B = \{A[1], \ldots, A[n]\}$ and $\mathcal{R} = \emptyset$.
 - At the end: $|B| = 1$ and $|\mathcal{R}| = n - 1$.

- **Answer rule**:
 - $(R_1 : R_2) \Rightarrow$ Any consistent answer.
 - $(B : R) \Rightarrow B < R$.
 - $(B_1 : B_2) \Rightarrow B_1 < B_2$; transfer B_2 from B to \mathcal{R}.
Theorem

The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least $n - 1$ comparisons.

Proof:

- A **useful** comparison decreases the size of B.
- Only $(B_1 : B_2)$ is a useful comparison.
- Each useful comparison decreases the size of B by 1.
- $n - 1$ useful comparisons are required to decrease the size of B from n to 1.
Parallel Find the Minimum or the Maximum

Round:
- May contain several comparisons.
- Each key may participate in at most one comparison.

Goals:
- Minimize number of rounds.
- Minimize number of comparisons.
Parallel-Find-Min($A[1], \ldots, A[n]$)

if $n = 1$ then return $A[1]$

for $i = 1$ to $n/2$

if $A[i] > A[i + (n/2)]$ (* comparison *)

then $A[i] \leftrightarrow A[i + (n/2)]$

return Parallel-Find-Min($A[1], \ldots, A[n/2]$)
Complexity

- **Number of comparisons:**

 \[
 \frac{n}{2} + \frac{n}{4} + \cdots + 1 = n - 1.
 \]

 The same as in Trivial-Find-Min

 Optimal.

- **Number of rounds:**

 \(\log_2 n\); number of recursive calls required to decrease the size of the array \(A\) from \(n\) to 1 by halving.

 Optimal.

 Remark: In Trivial-Find-Min there are \(n - 1\) rounds.
Theorem

The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least $\lceil \log_2 n \rceil$ rounds.
Theorem

The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least $\lceil \log_2 n \rceil$ rounds.

Proof:

- At most $\lfloor |B/2| \rfloor$ useful comparisons per round since any key may participate in only one comparison.
- $\lceil \log_2 n \rceil$ rounds are required to decrease the size of B from n to 1 by halving.
Find the Minimum & the Maximum (Sol. I)

Find-Min-and-Max$(A[1], \ldots, A[n])$

Find-Min$(A[1], \ldots, A[n])$

Find-Max$(A[2], \ldots, A[n])$
Find the Minimum & the Maximum (Sol. I)

Find-Min-and-Max\((A[1], \ldots, A[n])\)

Find-Min\((A[1], \ldots, A[n])\)

Find-Max\((A[2], \ldots, A[n])\)

Complexity:

- \((n - 1) + (n - 2) = 2n - 3\) comparisons.

- At most \(2 \log_2 n\) rounds using Parallel-Find-Min and Parallel-Find-Max.
Find the Minimum & the Maximum for $n = 2^k$ (Sol. II)

Parallel-Find-Min-and-Max($A[1], \ldots, A[n]$)
for $i = 1$ to $n/2$
 if $A[i] > A[i + (n/2)]$ (* comparison *)
 then $A[i] \leftrightarrow A[i + (n/2)]$
Parallel-Find-Min($A[1], \ldots, A[n/2]$)
Parallel-Find-Max($A[n/2 + 1], \ldots, A[n]$)

Complexity:
$n^2 + 2(n^2 - 1) = 3n^2 - 2$ comparisons.
$1 + \log_2(n/2) = \log_2 n$ rounds.
Find the Minimum & the Maximum for $n = 2^k$ (Sol. II)

Parallel-Find-Min-and-Max($A[1], \ldots, A[n]$)
for $i = 1$ to $n/2$
 if $A[i] > A[i + (n/2)]$ (* comparison *)
 then $A[i] \leftrightarrow A[i + (n/2)]$
Parallel-Find-Min($A[1], \ldots, A[n/2]$)
Parallel-Find-Max($A[n/2 + 1], \ldots, A[n]$)

Complexity:
- $\frac{n}{2} + 2 \left(\frac{n}{2} - 1 \right) = \frac{3n}{2} - 2$ comparisons.
- $1 + \log_2(n/2) = \log_2 n$ rounds.
Adversary Strategy – Data Structure

- \mathcal{N} - Candidates for **either** maximum or minimum.
- \mathcal{H} - Candidates **only** for maximum.
- \mathcal{B} - Candidates **only** for minimum.
- \mathcal{R} - Can be **neither** maximum nor minimum.

Initially: $\mathcal{N} = \{A[1], \ldots, A[n]\}$ and $\mathcal{H} = \mathcal{B} = \mathcal{R} = \emptyset$.

At the end: $|\mathcal{H}| = 1$, $|\mathcal{B}| = 1$, $|\mathcal{N}| = 0$, $|\mathcal{R}| = n - 2$.
Adversary Strategy – Answer Rule

- \((R_1 : R_2) \Rightarrow A\) consistent answer.
- \((R : H) \Rightarrow R < H\).
- \((B : R) \Rightarrow B < R\).
- \((N : R) \Rightarrow N < R\) and \(N \rightarrow B\).
- \((B : N) \Rightarrow B < N\) and \(N \rightarrow H\).
- \((N : H) \Rightarrow N < H\) and \(N \rightarrow B\).
- \((N_1 : N_2) \Rightarrow N_1 < N_2\) and \(N_1 \rightarrow B\) and \(N_2 \rightarrow H\).
- \((B : H) \Rightarrow B < H\).
- \((B_1 : B_2) \Rightarrow B_1 < B_2\) and \(B_2 \rightarrow R\).
- \((H_1 : H_2) \Rightarrow H_1 < H_2\) and \(H_1 \rightarrow R\).
The adversary forces any algorithm that finds the minimum and the maximum to perform at least \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons.
There Is No Better Algorithm

Theorem

The adversary forces any algorithm that finds the minimum and the maximum to perform at least \[\lceil \frac{3n}{2} \rceil - 2\] comparisons.

Proof:

- Non-max and non-min keys: \(N \rightarrow \{B, H\} \rightarrow R\).
- \((N_1 : N_2), (B_1 : B_2),\) and \((H_1 : H_2)\) are useful.
- \((N_1 : N_2)\) is better than \((N : R), (B : N), (N : H)\).\(\)
- The rest of the comparisons are not useful.
- Emptying \(N\) requires at least \(\lceil \frac{n}{2} \rceil\) useful comparisons.
- The fastest way to leave one key in both \(B\) and \(H\) requires at least \(n - 2\) useful comparisons.
Find the First and the Second

- **Output:** Keys $A[n]$ and $A[n-1]$:
 - $A[n - 1] \geq A[i]$ for $1 \leq i \leq n - 2$.

- **Goal:** Minimize number of *comparisons* between keys.
Find the First and the Second – Trivial Solution

Trivial-Find-First-and-Second\((A[1], \ldots, A[n])\)

Trivial-Find-Max\((A[1], \ldots, A[n])\)

Trivial-Find-Max\((A[1], \ldots, A[n-1])\)

return \((A[n] \geq A[n-1])\)
Find the First and the Second – Trivial Solution

\[
\text{Trivial-Find-First-and-Second}(A[1], \ldots, A[n])
\]

\[
\text{Trivial-Find-Max}(A[1], \ldots, A[n])
\]

\[
\text{Trivial-Find-Max}(A[1], \ldots, A[n-1])
\]

return \(A[n] \geq A[n-1] \)

- **Correctness:** By definition.

- **Complexity:** Exactly \((n - 1) + (n - 2) = 2n - 3\) comparisons.
Observation: Only “losers” to First can be Second.

- Trivial solution: \(n - 1 \) possible losers to First.
- Parallel solution: \(\lceil \log n \rceil \) possible losers to First.

Parallel Algorithm:

- **First:** Maximum of the original array.
- **Second:** Maximum of the \(\lceil \log_2 n \rceil \) losers to First.
Better Solution – Complexity and Optimality

Complexity:
- \((n - 1)\) comparisons to find First.
- \((\lceil \log_2 n \rceil - 1)\) comparisons to find Second.
- \(n + \lceil \log_2 n \rceil - 2\) comparisons to find First and Second.

Optimality: There exists an adversary strategy that forces any algorithm that finds First and Second to perform at least \(n + \lceil \log_2 n \rceil - 2\) comparisons.
The k-Selection Problem

Input:
- An integer k, $1 \leq k \leq n$.

Output: The key $A[i]$ that is the k smallest key in A.

Goal: Minimize number of comparisons between keys.

Median: $k = \lceil n/2 \rceil$ for an odd n.

Assumption: all the n keys are distinct.
Example

\[21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123]\n
- 5 is the 4\(^{th}\) smallest and the 8\(^{th}\) largest.
- 13 is the **median**: the 6\(^{th}\) smallest and the 6\(^{th}\) largest.
- 34 is the 8\(^{th}\) smallest and the 4\(^{th}\) largest.
Notations

- \(S_i \) the set of all the keys that are smaller than \(A[i] \):

- \(G_i \) the set of all the keys that are greater than \(A[i] \):

Observation: \(A[i] \) is the \(k \) smallest key iff

\[(|S_i| = k - 1) \AND (|G_i| = n - k) \.]
Example

\[[21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123] \]

- \(n = 11, \ k = 4 \).
- The \(k \) **smallest** key is 5.
- \(S_i = \{1, 3, 2\} \Rightarrow |S_i| = k - 1 = 3 \).
- \(G_i = \{21, 34, 8, 55, 13, 89, 123\} \Rightarrow |G_i| = n - k = 7 \).
Possible Solutions to the k-Selection Problem

- **Solution I:**
 - **Algorithm:** Sort the array and find the k smallest key.
 - **Complexity:** $\Theta(n \log n)$ comparisons.

- **Solution II:**
 - **Algorithm:** Repeat finding the minimum key k times.
 - **Complexity:** $\Theta(kn)$ comparisons:
 \[
 (n - 1) + (n - 2) + \cdots + (n - k) = kn - \frac{k(k+1)}{2}.
 \]

- **Which one is better?**
 - I is better than II for $k = \omega(\log n)$.
 - II is better than I for $k = o(\log n)$.

Randomized Solution

- **Select** a pivot $p = A[i]$ for a random i from the range $[1..n]$.

- **Partition** the array into 2 sets:
 - S the set of all keys that are smaller than p.
 - G the set of all keys that are greater than p.

- **Decision:**
 1. $|S| \geq k$: Recursively select the k smallest in S.
 2. $(|S| = k - 1) \text{ AND } (|G| = n - k)$: Return p.
 3. $|G| \geq n + 1 - k$: Recursively select the $(k - |S| - 1)$ smallest in G.

Amotz Bar-Noy (CUNY)
Example

- **Input:** \(A = [21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123] \) and \(k = 4 \).

 - \(p = 8 \): \(S = \{5, 1, 3, 2\} \) and \(G = \{21, 34, 55, 13, 89, 123\} \).

- **Second instance:** \(A = [5, 1, 3, 2] \) and \(k = 4 \).

 - \(p = 2 \): \(S = \{1\} \) and \(G = \{5, 3\} \).

- **Third instance:** \(A = [5, 3] \) and \(k = 2 \).

 - \(p = 5 \): \(S = \{3\} \) and \(G = \emptyset \).

- **Output:** The \(k = 4 \) smallest key is 5.
Observation: The k smallest key is the $(n + 1 - k)$ largest key.

The sizes of S and G determine in which part of the array to look for the k smallest key.

1. The k smallest key is in S.
2. The k smallest key is not in $S \cup G \Rightarrow$ it is the pivot.
3. The k smallest key is in G.
Randomized Solution – Expected Number of Comparisons

A good pivot: \(|S| \leq \frac{3n}{4} \) AND \(|G| \leq \frac{3n}{4} \).

Probabilities facts:

- With probability 1/2 the random pivot is good.
- The expected number of random selections until a good pivot is found is 2.
Modified Randomized Solution

- Repeat selecting a pivot \(p = A[i] \) for a random \(i \) from the range \([1..n]\) until finding a good pivot.

- Partition the array into the 3 sets: \(S, E, G \).

- **Decision:**

 1. \(|S| \geq k\): Recursively select the \(k \) smallest in \(S \).
 2. \((|S| < k) \text{ AND } (|G| < n + 1 - k)\): Return \(p \).
 3. \(|G| \geq n + 1 - k\): Recursively select the \((k - |S| - |E|)\) smallest in \(G \).
Randomized Solution – Expected Number of Comparisons

- Expected number of comparisons: \(T(n) \).
 - \(\Theta(n) \) to perform one partition.
 - \(\Theta(n) \) until a good partition is found.

\[
T(n) \leq T(3n/4) + \Theta(n) = \Theta(n).
\]
 - The expectation of a sum is the sum of expectations.
Assume a **nice** value for \(n \).

Assume \(T(n) \leq T(3n/4) + \alpha n \) for constant \(\alpha > 0 \).

\[
T(n) \leq T(3n/4) + \alpha n \\
\leq T(9n/16) + (3/4)\alpha n + \alpha n \\
\leq T(27n/64) + (9/16)\alpha n + (3/4)\alpha n + \alpha n \\
\vdots \\
\leq \alpha n + (3/4)\alpha n + (9/16)\alpha n + \cdots + (3/4)^i \alpha n + \cdots \\
< \alpha n \sum_{i=0}^{\infty} (3/4)^i < \alpha n \left(\frac{1}{1 - (3/4)} \right) = 4\alpha n .
\]
$T(n) = \Theta(n) - \text{Master Theorem}$

$T(n) = T(3n/4) + \Theta(n)$

- $a = 1$.
- $b = 4/3$.
- $\log_b(a) = 0$.
- $d = 1$.
- $d > \log_b(a)$.

$\implies \text{Case 3: } T(n) = \Theta(n^d) = \Theta(n)$.
Assume a nice value for n and ignore ceilings and floors.

Finding a pivot:
- **Partition** the array into $n/5$ groups each with 5 keys.
- **Find** the medians of each one of the $n/5$ groups.
- **Find** the median of the $n/5$ medians recursively.
- The **pivot** is the median of the medians.

The rest of the procedure is as the randomized solution.
Deterministic Solution – Illustration

G={greater than pivot}

S={Smaller than pivot}

Pivot
Deterministic Solution – Worst Case Number of Comparisons

- Assume **distinct** keys and ignore floors and ceilings.

Observations:

- S contains the $n/10$ medians that are smaller than the pivot and the $2n/10$ keys that are smaller than these $n/10$ medians.
 \[|S| \geq \frac{3n}{10} \Rightarrow |G| \leq \frac{7n}{10}. \]

- G contains the $n/10$ medians that are greater than the pivot and the $2n/10$ keys that are greater than these $n/10$ medians.
 \[|G| \geq \frac{3n}{10} \Rightarrow |S| \leq \frac{7n}{10}. \]
Worst case complexity: $T(n)$.

- $\Theta(n)$ to find the $n/5$ medians.
- $T(n/5)$ to find the median of the medians.
- $\Theta(n)$ to perform the partition.
- At most $T(7n/10)$ for the recursion.

$T(n) \leq T(7n/10) + T(n/5) + \Theta(n) = \Theta(n)$.

Because $7n/10 + n/5 = (1 - \varepsilon)n$ for a constant ε.
Solving the Recursive Formula

Formula: \(T(n) \leq T(7n/10) + T(n/5) + \alpha n. \)
- For some constant \(\alpha \) that is independent of \(n \).

Guess: \(T(n) \leq \beta n. \)
- For some constant \(\beta \) that is independent of \(n \).

Induction: \(T(n) \leq \beta(7n/10) + \beta(n/5) + \alpha n \)
\[= (7\beta/10 + \beta/5 + \alpha) n. \]

Set: \(\beta = 10\alpha \Rightarrow T(n) \leq (7\beta/10 + \beta/5 + \beta/10) n. \)

Conclude: \(T(n) \leq \beta n \leq 10\alpha n. \)
Finding all the $n/5$ medians:

- The median of 5 keys can be found with 6 comparisons.
- $6(n/5) = 1.2n$ comparisons to find all the medians.

$(2/5)n = 0.4n$ comparisons, only with the keys not in $S \cup G$, to perform the partition.

$\Rightarrow \alpha \leq 1.6.$

$\Rightarrow \beta \leq 10\alpha \leq 16.$

$\Rightarrow T(n) \leq \beta n \leq 16n.$
Why Not Groups of 3?

- S contains the $n/6$ medians that are smaller than the pivot and the $n/6$ keys that are smaller than these $n/6$ medians.
 \[\Rightarrow |S| \geq n/3 \Rightarrow |G| \leq 2n/3. \]

- Similarly, $|S| \leq 2n/3$.

- At most $T(2n/3)$ for the recursion.

- $T(n/3)$ to find the median of the medians.

- Therefore, $T(n) \leq T(2n/3) + T(n/3) + \Theta(n)$.

- The solution to this recursive formula is $T(n) = \Theta(n \log n)$.
Groups of $2k + 1$

- At most $T \left(\frac{(3k+1)n}{4k+2} \right)$ for the recursion.
- $T \left(\frac{n}{2k+1} \right)$ to find the median of the medians.
- $T(n) \leq T \left(\frac{(3k+1)n}{4k+2} \right) + T \left(\frac{n}{2k+1} \right) + \Theta(n) = \Theta(n)$.
- Therefore, $T(n) \leq \beta_k n$ for a constant β_k that depends on k but independent on n.
- The best k is determined by the number of comparisons required to find all the $n/(2k + 1)$ medians and the number of comparisons needed to complete the partition.

Amotz Bar-Noy (CUNY)
The k-Selection Problem Complexity

- **Lower bound**: $\Omega(n)$ comparisons are required for selecting the minimum.

- **Randomized upper bound**: $\Theta(n)$.

- **Deterministic upper bound**: $\Theta(n)$.

- **Complexity**: $\Theta(n)$ average and worst case.
The k-Selection Problem Known Bounds

- **First linear upper bound:** $T(n) \leq 5.43n$.

- **Best upper bound:** $T(n) \leq 2.95n + o(n)$.

- **Simple lower bound:** $T(n) \geq 1.5n$.

- **Best lower bound:** $T(n) \geq 2n + o(n)$.