The Sorting Problem

- **Keys:** Entities from a *well ordered* domain.

- **Comparison:** For 2 keys K_1 and K_2
 - either $K_1 < K_2$
 - or $K_2 < K_1$
 - or $K_1 = K_2$.

- **Goal:** Minimize number of comparisons between keys.
Complexity of the Sorting Problem

- $\Omega(n \log n)$ comparisons lower bound.
- $O(n^2)$ comparisons simple upper bounds.
- $O(n \log n)$ comparisons upper bound.
- $\Theta(n \log n)$ overall complexity.

Bounds are for both worst case and average case complexity.
Some Sorting Algorithms

Simple Algorithms:

- **Bubble-Sort**: $\Theta(n^2)$ worst & average case.
- **Insertion-Sort**: $\Theta(n^2)$ worst & average case.
- **Selection-Sort**: $\Theta(n^2)$ worst & average case.

Efficient Sorting Algorithms:

- **Merge-Sort**: $\Theta(n \log n)$ worst & average case.
- **Quick-Sort**: $\Theta(n \log n)$ average case; $\Theta(n^2)$ worst case.
- **Heap-Sort**: $\Theta(n \log n)$ worst & average case.
- **Binary-Tree-Sort**: $\Theta(n \log n)$ average case; $\Theta(n^2)$ worst case.
- **Balanced-Tree-Sort**: $\Theta(n \log n)$ worst & average case.
Bubble Sort

Ideas:

- Find the minimum \(n - 1 \) times.
- Compare and exchange only adjacent keys.

Implementation:

\[
\text{Bubble-Sort}(A[1], \ldots, A[n])
\]

\[
\text{for } i = 1 \text{ to } n - 1
\]

\[
\text{for } j = n \text{ downto } i + 1
\]

\[
\text{if } A[j] < A[j - 1] \text{ (* comparison *)}
\]

\[
\text{then } A[j] \leftrightarrow A[j - 1]
\]
By induction, for $1 \leq i \leq n - 1$, after round i:
- $A[i] \leq A[j]$ for all $i < j \leq n$.

For $1 \leq i \leq n - 1$, in round i: exactly $n - i$ comparisons.

The total number of comparisons is always

$$
(n - 1) + (n - 2) + \cdots + 1 = \frac{n(n - 1)}{2} = \Theta(n^2)
$$
Insertion Sort

- **Ideas:**
 - Insert the current key into a sorted prefix of the array.
 - Repeat this insertion \(n - 1 \) times.
 - Compare and exchange only adjacent keys.

- **Implementation:**

```plaintext
Insertion-Sort(A[1], \ldots, A[n])
for i = 2 to n
    j = i
    while (j > 1) and (A[j] > A[j - 1]) (* comparison *)
        j = j - 1
```
Insertion Sort – Correctness

- By induction, for $2 \leq i \leq n$, after round i:

- After $n – 1$ rounds:
Insertion Sort – Worst Case Complexity

- **Upper bound on the number of comparisons:**

 $1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2}$.

 The input array is sorted in a **decreasing** order.

- **Lower bound to the number of comparisons:**

 $1 + 1 + \cdots + 1 = n - 1$.

 The input array is sorted in a **non-decreasing** order.

- **Complexity:** $\Theta(n^2)$ comparisons in the worst case.
With **binary search**, Insertion sort can be implemented with $\Theta(n \log n)$ comparisons.

But with $\Theta(n^2)$ operations:

- When the input array is sorted in a *decreasing* order, there are $\Theta(n^2)$ array assignments operations.

In any case, $\Theta(n^2)$ worst case *time* complexity.
Assumption: A uniform distribution over all n permutations.

Round i for $2 \leq i \leq n$:
- For $1 \leq k \leq i$, $A[i]$ is the k-largest among $A[1], \ldots, A[i]$ with probability $1/i$.
- k comparisons if $A[i]$ is the k-largest, for $1 \leq k \leq i - 1$.
- $i - 1$ comparisons if $A[i]$ is the smallest (i-largest).

Average number of comparisons in round i is

$$\frac{1}{i} \left(1 + 2 + \cdots + (i - 1) + (i - 1) \right) = \frac{(i+1)}{2} - \frac{1}{i}.$$
Insertion Sort – Average Case Complexity

- **Average number of comparisons** $C(n)$:

 $$C(n) = \sum_{i=2}^{n} \frac{(i + 1)}{2} - \sum_{i=2}^{n} \frac{1}{i}$$

 $$= \frac{1}{2} \sum_{i=3}^{n+1} i - \sum_{i=2}^{n} \frac{1}{i}$$

 $$= \frac{1}{2} \left(\frac{(n + 1)(n + 2)}{2} - 3 \right) - \sum_{i=2}^{n} \frac{1}{i}$$

 $$\approx \frac{n^2}{4} + \frac{3n}{4} - 1 - \ln n$$

 $$\approx \frac{n^2}{4} = \Theta(n^2)$$
Merge-Sort

- **Divide and Conquer** for $n \geq 2$:
 - Recursively sort the sub-arrays $A[1..q]$ and $A[q + 1..n]$ for $q = \left\lfloor \frac{n+1}{2} \right\rfloor$.
 - Merge the sub-arrays $A[1..q]$ and $A[q + 1..n]$ into a **sorted** array $A[1..n]$.
The Merge Procedure

- **Global array:** \(A[1], A[2], \ldots, A[n] \).

- **Merge** \((p, q, r)\):
 - \(1 \leq p \leq q < r \leq n \).
 - Merge the two sorted sub-arrays \(A[p] \leq \cdots \leq A[q] \) and \(A[q+1] \leq \cdots \leq A[r] \) into a sorted sub-array \(A[p] \leq \cdots \leq A[r] \).

- **Complexity:** Number of comparisons is **at most** \(r - p \).
The Recursive Merge-Sort Procedure

- **Initial recursive call:** $\text{Merge-Sort}(1, n)$.

- **Recursive procedure:**

 $\text{Merge-Sort}(p, r)$

 if $r > p$ then

 $$q = \left\lfloor \frac{p+r}{2} \right\rfloor$$ (* $p \leq q < q + 1 \leq r$ *)

 $\text{Merge-Sort}(p, q)$
 $\text{Merge-Sort}(q + 1, r)$
 $\text{Merge}(p, q, r)$
By induction on $r - p$.

Case $r = p$ the array is sorted trivially.

Case $p \leq q < r$ the induction hypothesis holds:
 - For sub-array $A[q + 1..r]$ since $r - (q + 1) < r - p$.

The induction step is correct due to the correctness of procedure Merge.
MergeSort – Complexity

- $T(n)$ - number of comparisons.
- $T(1) = 0$.
- $T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + (n - 1)$.

Master Theorem:

- $a = 2, b = 2, \text{ and } d = 1$.
- $\log_b(a) = d \Rightarrow T(n) = \Theta(n \log n)$.
Merge-Sort – Complexity for \(n = 2^k \)

\[
\begin{align*}
T(1) &= 0 \\
T(2) &\leq 2 \cdot T(1) + (2 - 1) = 1 \\
T(4) &\leq 2 \cdot T(2) + (4 - 1) = 5 \\
T(8) &\leq 2 \cdot T(4) + (8 - 1) = 17 \\
T(16) &\leq 2 \cdot T(8) + (16 - 1) = 49 \\
T(32) &\leq 2 \cdot T(16) + (32 - 1) = 129
\end{align*}
\]

Guess: \(T(n) \leq n \log_2 n - (n - 1). \)
Guessing by Unfolding the Recursion

\[T(2^k) \leq 2T(2^{k-1}) + (2^k - 1) \]
\[= 2T(2^{k-1}) + (1 \cdot 2^k - 1) \]
\[\leq 2(2T(2^{k-2}) + (2^{k-1} - 1)) + (2^k - 1) \]
\[= 4T(2^{k-2}) + (2 \cdot 2^k - 3) \]
\[\leq 4(2T(2^{k-3}) + (2^{k-2} - 1)) + (2 \cdot 2^k - 3) \]
\[= 8T(2^{k-3}) + (3 \cdot 2^k - 7) \]
\[\vdots \]
\[= 2^i T(2^{k-i}) + (i \cdot 2^k - (2^i - 1)) \]
\[\vdots \]
\[= 2^k T(2^0) + (k \cdot 2^k - (2^k - 1)) \]
\[= n \log_2 n - (n - 1) \]
Proof by Induction for $n = 2^k$

- **Claim:** $T(n) \leq n \log_2 n - (n - 1)$.

- **Verify for $n = 1$:** $1 \log_2 1 - (1 - 1) = 0 \geq T(1)$.

- **Verify for $n = 2$:** $2 \log_2 2 - (2 - 1) = 1 \geq T(2)$.

- **Verify for $n = 4$:** $4 \log_2 4 - (4 - 1) = 5 \geq T(4)$.
Proof By Induction for $n = 2^k$

- **Assume correctness for $n/2$:**

\[
T(n/2) \leq (n/2) \log_2(n/2) - (n/2 - 1)
\]

\[
= (n/2)(\log_2 n - 1) - (n/2 - 1)
\]

\[
= (n/2) \log_2 n - (n - 1)
\]

- **Induction step for n:**

\[
T(n) \leq 2T(n/2) + (n - 1)
\]

\[
\leq 2((n/2) \log_2 n - (n - 1)) + (n - 1)
\]

\[
= n \log_2 n - (n - 1)
\]
Merge-Sort – Complexity for $n \neq 2^k$

\[
\begin{align*}
T(1) &= 0 \\
T(2) &\leq T(1) + T(1) + (2 - 1) = 1 \\
T(3) &\leq T(2) + T(1) + (3 - 1) = 3 \\
T(4) &\leq T(2) + T(2) + (4 - 1) = 5 \\
T(5) &\leq T(3) + T(2) + (5 - 1) = 8 \\
T(6) &\leq T(3) + T(3) + (6 - 1) = 11 \\
T(7) &\leq T(4) + T(3) + (7 - 1) = 14 \\
T(8) &\leq T(4) + T(4) + (8 - 1) = 17 \\
T(9) &\leq T(5) + T(4) + (9 - 1) = 21
\end{align*}
\]
Merge-Sort – Complexity for $n \neq 2^k$

- **Guess:** $T(n) \leq n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1)$.

- **Verify for $n = 1$:** $1 \lceil \log_2 1 \rceil - (2^{\lceil \log_2 1 \rceil} - 1) = 0 \geq T(1)$.
- **Verify for $n = 3$:** $3 \lceil \log_2 3 \rceil - (2^{\lceil \log_2 3 \rceil} - 1) = 3 \geq T(3)$.
- **Verify for $n = 6$:** $6 \lceil \log_2 6 \rceil - (2^{\lceil \log_2 6 \rceil} - 1) = 11 \geq T(6)$.
- **Verify for $n = 8$:** $8 \lceil \log_2 8 \rceil - (2^{\lceil \log_2 8 \rceil} - 1) = 17 \geq T(8)$.
- **Verify for $n = 9$:** $9 \lceil \log_2 9 \rceil - (2^{\lceil \log_2 9 \rceil} - 1) = 21 \geq T(9)$.
Observations

- \[\lceil \log_2(k+1) \rceil = \lceil \log_2 k \rceil\] for \(k \neq 2^h\).
- \[\lceil \log_2(k+1) \rceil = \lceil \log_2 k \rceil + 1\] for \(k = 2^h\).
- \[\lceil \log_2(2k) \rceil = \lceil \log_2 k \rceil + 1\].
- \[\lceil \log_2(2k+1) \rceil = \lceil \log_2 k \rceil + 1\] for \(k \neq 2^h\).
- \[\lceil \log_2(2k+1) \rceil = \lceil \log_2 k \rceil + 2\] for \(k = 2^h\).
Case \(n = 2k \)

Claim: \(T(n) \leq n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1) \).

Induction step:

\[
T(n) \leq 2T(k) + (n - 1)
\leq 2(k \lceil \log_2 k \rceil - (2^{\lceil \log_2 k \rceil} - 1)) + (n - 1)
= n(\lceil \log_2 k \rceil + 1) - (2^{\lceil \log_2 k \rceil + 1} - 1)
= n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1).
\]
Case $n = 2k + 1$ and $k \neq 2^h$

Claim: $T(n) \leq n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1)$.

Induction step:

\[
T(n) \leq T(k + 1) + T(k) + (n - 1)
\leq ((k + 1) \lceil \log_2 (k + 1) \rceil - (2^{\lceil \log_2 (k+1) \rceil} – 1))
+ (k \lceil \log_2 k \rceil - (2^{\lceil \log_2 k \rceil} - 1)) + (n - 1)
= n(\lceil \log_2 k \rceil + 1) - (2^{\lceil \log_2 k \rceil + 1} - 1)
= n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1).
\]
Case $n = 2k + 1$ and $k = 2^h$

Claim: $T(n) \leq n\lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1)$.

Induction step:

\[
T(n) \leq T(k + 1) + T(k) + (n - 1)
\leq (k + 1)\lceil \log_2 (k + 1) \rceil - (2^{\lceil \log_2 (k + 1) \rceil} - 1)) + (k \lceil \log_2 k \rceil - (2^{\lceil \log_2 k \rceil} - 1)) + (n - 1)
= (k + 1)(h + 1) - (2k - 1) + kh - (k - 1) + 2k
= (2k + 1)h + 3 = n(h + 2) - (2n - 3)
= n\lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1) .
\]
Merge-Sort – Structure

(A[1], A[2])

(A[1])

(A[2], A[3], A[4])

(A[3], A[4])

(A[3])

(A[4])

(A[5], A[6], A[7], A[8])

(A[5], A[6])

(A[5])

(A[6])

(A[7], A[8])

(A[7])

(A[8])
Non-Recursive Merge-Sort Procedure – $n = 2^k$

Assumption: $n = 2^k$ for integer $k \geq 1$.

Merge-Sort(1, n)
 for $h = 1$ to k
 for $p = 1$ to n step 2^h
 $r = p + 2^h - 1$
 $q = p + 2^{h-1} - 1$ (* $q = \lfloor (p + r)/2 \rfloor$ *)
 Merge(p, q, r)
Example: variables for $n = 16 = 2^4$

<table>
<thead>
<tr>
<th>h</th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 3, ..., 15</td>
<td>1, 3, ..., 15</td>
<td>2, 4, ..., 16</td>
</tr>
<tr>
<td>2</td>
<td>1, 5, 9, 13</td>
<td>2, 6, 10, 14</td>
<td>4, 8, 12, 16</td>
</tr>
<tr>
<td>3</td>
<td>1, 9</td>
<td>4, 12</td>
<td>8, 16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Example: execution for $n = 8$
Correctness – $n = 2^k$

- By **induction**, for $1 \leq h \leq k = \log_2 n$, after round h:

 $$
 A[2 \cdot 2^h + 1] \leq A[2 \cdot 2^h + 2] \leq \cdots \leq A[3 \cdot 2^h] \\
 \vdots \quad \vdots \\
 A[2^k - 2^h + 1] \leq A[2^k - 2^h + 2] \leq \cdots \leq A[2^k]
 $$

Amotz Bar-Noy (CUNY) Algorithms: Sort Fall 2010 33 / 93
Correctness – Example for $n = 2^5 = 32$ and $h = 3$

After 3 rounds:

Non-Recursive Merge-Sort Procedure – $n \neq 2^k$

Assumption: $2^{k-1} < n < 2^k$ for integer $k \geq 1$.

Merge-Sort(1, n)
 for $h = 1$ to k
 for $p = 1$ to n step 2^h
 $r = \min\{n, (p + 2^h - 1)\}$
 $q = \min\{n, (p + 2^{h-1} - 1)\}$
 if $r > q$ then Merge(p, q, r)

Remark: In some rounds, the suffix is not merged.
Example: variables for $n = 27$

<table>
<thead>
<tr>
<th>h</th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 3, ..., 25, 27</td>
<td>1, 3, ..., 25, 27</td>
<td>2, 4, ..., 26, 27</td>
</tr>
<tr>
<td>2</td>
<td>1, 5, ..., 21, 25</td>
<td>2, 6, ..., 22, 26</td>
<td>4, 8, ..., 24, 27</td>
</tr>
<tr>
<td>3</td>
<td>1, 9, 17, 25</td>
<td>4, 12, 20, 27</td>
<td>8, 16, 24, 27</td>
</tr>
<tr>
<td>4</td>
<td>1, 17</td>
<td>8, 24</td>
<td>16, 27</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>16</td>
<td>27</td>
</tr>
</tbody>
</table>
Example: execution for $n = 11$
Correctness – $2^{k-1} < n < 2^k$

- By induction, for $1 \leq h \leq k = \lceil \log_2 n \rceil$, after round h:

 \[
 A[2 \cdot 2^h + 1] \leq A[2 \cdot 2^h + 2] \leq \cdots \leq A[3 \cdot 2^h] \\
 \vdots \quad \vdots \\
 A\left\lfloor n/2^h \right\rfloor \cdot 2^h + 1 \leq A\left\lfloor n/2^h \right\rfloor \cdot 2^h + 2 \leq \cdots \leq A[n]
 \]

Correctness – Example for $n = 27$ and $h = 2$

After 2 rounds:

Idea: Procedure Merge is executed \(\frac{n}{2^h} \) times on size \(2^h \) for
\[1 \leq h \leq k = \log_2 n. \]

\[
T(2^k) \leq \sum_{h=1}^{k} \left(\frac{n}{2^h}(2^h - 1) \right)
\]

\[
= \sum_{h=1}^{k} n - n \sum_{h=1}^{k} \frac{1}{2^h}
\]

\[
= n \log_2 n - n \left(1 - \frac{1}{2^k} \right)
\]

\[
= n \log_2 n - (n - 1).
\]
Complexity – $2^{k-1} < n < 2^k$

- At most $n - 1$ comparisons in each of the $\lceil \log_2 n \rceil$ rounds.

- **Upper bound:**

 $$T(n) \leq (n - 1) \lceil \log_2 n \rceil = n \lceil \log_2 n \rceil - \lceil \log_2 n \rceil.$$

- A careful analysis can improve the above bound. However, the complexity is not $T(n) = n \lceil \log_2 n \rceil - (2^{\lceil \log_2 n \rceil} - 1)$ as with the recursive implementation.

 - $T_{\text{recursive}}(5) = 8$ and $T_{\text{non-recursive}}(5) = 9.$
Quick-Sort

Divide and Conquer for $n \geq 2$:

- **Partition** the array $A[1..n]$ into two sub-arrays $A[1..q]$ and $A[q + 1..n]$ such that all the keys in the sub-array $A[1..q]$ are smaller or equal to all the keys in the sub-array $A[q + 1..n]$.

- Recursively **Sort** the sub-arrays $A[1..q]$ and $A[q + 1..n]$.
The Partition Procedure

Partition(p, r):
- $r > p$.
- Return a value $p \leq q < r$ such that $A[i] \leq A[j]$ for any $p \leq i \leq q$ and $q + 1 \leq j \leq r$.

Method: Pivot partitioning.
- One key is compared with the rest of the keys.
- This key is the $(q - p)$-smallest in the sub-array $A[p..r]$.

Complexity: Number of comparisons is exactly $(r - p)$.
The Recursive Quick-Sort Procedure

Initial recursive call: \textbf{Quick-Sort}(1, n).

Recursive procedure:

\begin{verbatim}
Quick-Sort(p, r)
 if r > p then
 q = Partition(p, r)
 Quick-Sort(p, q)
 Quick-Sort(q + 1, r)
\end{verbatim}
Quick-Sort – Correctness

Assumption: Make sure that $p \leq q < r$.

Proof:
- By induction on $r - p$.
- Case $r = p$ the array is sorted trivially.
- Case $p \leq q < r$ the induction hypothesis is true:
 - For sub-array $A[q + 1..r]$ since $r - (q + 1) < r - p$.
- The induction step is correct since procedure Partition guarantees that all the keys in $A[p..q]$ are smaller or equal to all the keys in $A[q + 1..r]$.
Quick-Sort – Complexity

- $T(n)$ - number of comparisons.
- $T(1) = 0$.
- $T(n) \leq T(q) + T(n - q) + (n - 1)$.

 Best: $T(n) \leq 2T(n/2) + (n - 1) = \Theta(n \log n)$.

 Good: $T(n) \leq T(n/10) + T(9n/10) + (n - 1) = \Theta(n \log n)$.

 Worst: $T(n) \geq T(n - 1) + (n - 1) = \Theta(n^2)$.
A good pivot: Greater than at least \(n/4 \) keys and smaller than at least \(n/4 \) keys.

Probabilities facts:

- With probability \(1/2 \) a random pivot is good.
- Expected number of random pivots until finding a good pivot is 2.
Θ(n log n) Expected Number of Comparisons

- Θ(n) to perform one partition.
- Θ(n) until a good partition is performed.
- For a recursive inequality of the type
 \[T(n) \leq T(\gamma n) + T((1 - \gamma)n) + \Theta(n) \]
 the worst case is when \(\gamma \to 1 \).
- \(\gamma \leq 3/4 \) for a good pivot.
- Therefore for Quick-Sort:
 \[T(n) \leq T(3n/4) + T(n/4) + \Theta(n) = \Theta(n \log n). \]
 The expectation of a sum is the sum of expectations.
Solving the Recursive Formula

Assumption: ignore floors and ceilings.

Formula: \(T(n) \leq T(3n/4) + T(n/4) + \alpha n \) for constant \(\alpha > 0 \).

Claim: \(T(n) \leq \beta n \log n \) for constant \(\beta > 1.25\alpha \).
Solving the Recursive Formula

Induction step:

\[T(n) \leq \beta \frac{3n}{4} \log_2 \left(\frac{3n}{4} \right) + \beta \frac{n}{4} \log_2 \left(\frac{n}{4} \right) + \alpha n \]

\[= \beta \left(\frac{3n}{4} \log_2 n + \frac{n}{4} \log_2 n \right) - \beta \frac{3n}{4} \log_2 \left(\frac{4}{3} \right) - \beta \frac{n}{4} 2 + \alpha n \]

\[= \beta n \log_2 n + \left(\alpha - \beta \frac{2}{2} - 3 \beta \frac{4}{4} \log_2 \left(\frac{4}{3} \right) \right) n \]

\[\leq \beta n \log_2 n . \]
The coefficient of n must be negative if $T(n) \leq \beta n \log_2 n$.

\[
\alpha < \frac{\beta}{2} + \frac{3\beta}{4} \log_2 \left(\frac{4}{3}\right).
\]

\[
\beta > \frac{1}{0.5 + 0.75 \log_2 (1.333)} \alpha \approx 1.233 \alpha.
\]
Assumption: For $n \geq 2$ and $1 \leq q < n$, with probability $1/(n - 1)$ the value of q is $1, 2, \ldots, n - 1$.

Fix q: $(T(q) + T(n - q))$ comparisons in the recursive calls.

Procedure Partition: Exactly $n - 1$ comparisons.
Recursive Formula for Average Case Complexity

\[T(n) = (n - 1) + \frac{1}{n - 1} \sum_{q=1}^{n-1} (T(q) + T(n - q)) \]

\[= (n - 1) + \frac{2}{n - 1} \sum_{q=1}^{n-1} T(q) \]

\[= \Theta(n \log n) . \]
Bounding the Sum $\sum_{q=1}^{n-1} q \ln(q)$

- $f(x) = x \ln(x)$ is a monotonic non-decreasing function.

- $\int x \ln(x) \, dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4}.$

$$\sum_{q=1}^{n-1} q \ln(q) \leq \int_1^n x \ln(x) \, dx$$

$$= \frac{1}{2} n^2 \ln(n) - \frac{1}{4} n^2 + \frac{1}{4}.$$
Solving the Recursive Formula for Quick-Sort

- **Induction hypothesis:** \(T(q) \leq cq \ln(q) \) for \(1 \leq q < n \).

\[
T(n) = (n - 1) + \frac{2}{n - 1} \sum_{q=1}^{n-1} T(q)
\]

\[
\leq (n - 1) + \frac{2c}{n - 1} \sum_{q=1}^{n-1} q \ln(q)
\]

\[
\leq (n - 1) + \frac{2c}{n - 1} \left(\frac{1}{2} n^2 \ln(n) - \frac{1}{4} n^2 + \frac{1}{4} \right)
\]

- \(T(n) \leq cn \ln(n) \) for some constant \(c \).
Another Method

- \(T(n) = (n - 1) + \frac{2}{n-1} \sum_{q=1}^{n-1} T(q) \).
- \(T(n - 1) = (n - 2) + \frac{2}{n-2} \sum_{q=1}^{n-2} T(q) \).
- \((n - 1) T(n) - (n - 2) T(n - 1) = (2n - 3) + 2T(n - 1) \).
- \((n - 1) T(n) - n T(n - 1) = 2n - 3 \).
- \(\frac{T(n)}{n} - \frac{T(n-1)}{n-1} = \frac{2n-3}{n(n-1)} \).
Another Method – Continue

- $S(n) = \frac{T(n)}{n}$ and $S(1) = 0$.

- $S(n) = S(n - 1) + \frac{2n-3}{n(n-1)}$

- $S(n) = \sum_{i=2}^{n} \frac{2i-3}{i(i-1)} < \sum_{i=2}^{n} \frac{2}{i} = 2H(n) - 2 \leq 2 \ln(n)$.

- $T(n) = nS(n) \leq 2n \ln(n) \approx 1.386n \log_2(n)$.
Quick-Sort vs. Merge-Sort

- Merge-Sort performs $O(n \log n)$ comparisons in the worst case and in the average case.

- Quick-Sort performs $\Omega(n^2)$ comparisons in the worst case and $O(n \log n)$ comparisons in the average case.

- Merge-Sort performs less comparisons in the worst case than Quick-Sort performs in the average case.

- However, the overall complexity of Quick-Sort in the average case is better than the overall complexity of Merge-Sort in the average case.
The algorithm goal: Find a permutation of 1, \ldots, n.

- There are $n! = n(n-1)(n-2) \cdots 2 \cdot 1$ permutations.

The Adversary goal:

- Force the algorithm to have an $\Omega(n \log n)$ worst case complexity.
- For any algorithm, select a permutation that is found by the algorithm with $\Omega(n \log n)$ comparisons.
Adversary Strategy

- Maintain a set S_k of all the candidate permutations that are consistent with the first k comparisons.

- Initially, S_0 is the set of all $n!$ permutations.

- At the end S_h contains exactly one permutation.

- Let the k-th comparison be $(A[i] : A[j])$:
 - $S_k = S'$ if $|S| \leq |S'|$.
 - $S_k = S$ if $|S| > |S'|$.

Amotz Bar-Noy (CUNY) Algorithms: Sort Fall 2010 60 / 93
Example \(n = 4 \)

- Initially, there are \(4! = 24 \) candidate permutations.

- The adversary strategy forces any algorithm to perform at least \(\lceil \log_2(24) \rceil = 5 \) comparisons:
 - After 1 comparison, there are at least 12 candidates.
 - After 2 comparisons, there are at least 6 candidates.
 - After 3 comparisons, there are at least 3 candidates.
 - After 4 comparisons, there are at least 2 candidates.
 - After 5 comparisons, the permutation is found.
Example \(n = 4 \)

- Assume the numbers 1, 2, 3, 4 are stored at \(x, y, z, w \).

- A permutation is represented by the letters \(x, y, z, w \):
 - \(x = 2, y = 3, z = 1, w = 4 \) implies permutation \(zxyw \).
 - Permutation \(wyxz \) implies \(x = 3, y = 2, z = 4, w = 1 \).
 - If \(y < z \) then \(wyxz \) could be a candidate permutation and \(zyxw \) cannot be a candidate permutation.
\(n = 4: S_0 \)

\[
\begin{array}{cccc}
 xyzw & yxzw & zxyw & wxyz \\
 xywz & yxwz & zxwy & wxzy \\
 xzyw & yzxw & zyxw & wyxz \\
 xzwy & yzwx & zyxw & wyzx \\
 xwyz & ywxz & zwxy & wzxy \\
 xwzy & ywzx & zwyx & wzyx \\
\end{array}
\]

* \(|S_0| = 24 = 4! \)
$n = 4$: S_1 after $x < y$ is True

\[
\begin{align*}
xyzw & \quad * * * * \quad zxyw \quad wxyz \\
xywz & \quad * * * * \quad zxwy \quad wxzy \\
xzyw & \quad * * * * \quad * * * * \quad * * * * \\
xzwy & \quad * * * * \quad * * * * \quad * * * * \\
xwyz & \quad * * * * \quad zwxy \quad wzxy \\
xwzy & \quad * * * * \quad * * * * \quad * * * * \\
\end{align*}
\]

$|S_1| = 12$ for every comparison and every answer.
$n = 4$: the Comparison is $x < z$

<table>
<thead>
<tr>
<th>S_2 if $x < z$ is true</th>
<th>S_2 if $z < x$ is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xyzw$</td>
<td>$zxyw$</td>
</tr>
<tr>
<td>$xywz$</td>
<td>$zxwy$</td>
</tr>
<tr>
<td>$xzyw$</td>
<td>$***$</td>
</tr>
<tr>
<td>$xzyw$</td>
<td>$***$</td>
</tr>
<tr>
<td>$xzwy$</td>
<td>$***$</td>
</tr>
<tr>
<td>$xwyz$</td>
<td>$***$</td>
</tr>
<tr>
<td>$xwzy$</td>
<td>$***$</td>
</tr>
</tbody>
</table>

$|S_2| = 8$ since the adversary answers $x < z$ true.
\(n = 4: \ S_2 \ \text{after} \ z < w \ \text{is True} \)

<table>
<thead>
<tr>
<th>xyzw</th>
<th>* * * *</th>
<th>zxyw</th>
<th>* * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * * *</td>
<td>* * * *</td>
<td>zxwy</td>
<td>* * * *</td>
</tr>
<tr>
<td>xzyw</td>
<td>* * * *</td>
<td>* * * *</td>
<td>* * * *</td>
</tr>
<tr>
<td>xzwy</td>
<td>* * * *</td>
<td>* * * *</td>
<td>* * * *</td>
</tr>
<tr>
<td>* * * *</td>
<td>* * * *</td>
<td>zwxy</td>
<td>* * * *</td>
</tr>
</tbody>
</table>

\(|S_2| = 6 \ \text{also if} \ w < z \ \text{is true.} \)
The algorithm finds the permutation with h comparisons.

$S_{k-1} = S \cup S' \implies |S_k| \geq \frac{|S_{k-1}|}{2}$.

$h \geq \log_2(|S_0|) = \log_2(n!) = \Omega(n \log n)$.
\[\log_2(n!) = \Omega(n \log n) \]

Direct approach:

- \[n! \geq n(n - 1) \cdots \left\lceil \frac{n}{2} \right\rceil \geq \left(\left\lceil \frac{n}{2} \right\rceil \right) \left\lceil \frac{n}{2} \right\rceil \geq \left(\frac{n}{2} \right)^{\frac{n}{2}}. \]
- \[\log_2(n!) \geq \log_2 \left(\frac{n}{2} \right)^{\frac{n}{2}} = \frac{n}{2} \log_2 \left(\frac{n}{2} \right). \]
- \[h \geq \log_2(n!) = \Omega(n \log n). \]

Stirling’s approximation:

- \[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right). \]
- \[h \geq \log_2(n!) = \Theta(n \log n). \]
Comparison Tree Algorithm to Sort 3 Keys

A < B

YES

B < C

YES

A < B < C

YES

A < C

YES

A < C < B

YES

B < A < C

YES

B < C

YES

B < C < A

YES

C < B < A

YES

B < C < A

NO

C < B < A

NO

C < A < B

NO

A < C < B

NO

A < C

NO

C < A < B

NO

B < A < C

NO

A < B

NO

A < B

NO
Comparison Tree for Sorting Algorithms

- A **full** binary tree with $n!$ leaves.
- The **root** represents the **first** comparison.
- Any **internal node** represents a comparison:
 - If the answer is **YES** continue with the **left** child.
 - If the answer is **NO** continue with the **right** child.
- A **leaf** represents a permutation.
Binary Trees

- **Binary tree**: Each internal node has 1 or 2 children.

- **Full binary tree**: Each internal node has exactly 2 children.
 - k-leaves full binary tree has exactly $k - 1$ internal nodes.

- **Heights**:
 - **Leaf height**: Length of path from the leaf to the root.
 - **Root height**: 0.
 - **Tree height**: The maximum height of one of the leaves.

- **Balance binary trees**: Leaves heights are h or $h + 1$ ($h \geq 1$).
Full Binary Trees: Height and Average Height

Notations:
- \(T \): a full binary tree with \(k \) leaves.
- \(h(\ell) \): height of leaf \(\ell \).
- \(h(T) = \max_\ell \{ h(\ell) \} \): height of \(T \).
- \(\hat{h}(T) = (1/k) \sum_\ell h(\ell) \): average height of \(T \).

Lemma I: \(h(T) \geq \lceil \log_2 k \rceil \).

Lemma II: \(\hat{h}(T) = \Omega(\log_2 k) \).
Example: Height and Average Height

Balanced tree: $h(T) = 2$ and $\hat{h}(T) = 2$.

Non-balanced tree: $h(T) = 3$ and $\hat{h}(T) = 9/4$.
Proof I:

- The **shortest** full tree with \(k \) leaves is the balance full binary tree.
- \(h(T) \geq \lceil \log_2 k \rceil \) in a balance full binary tree \(T \).

Proof II:

- The tree with the **smallest** average height among all full trees with \(k \) leaves is the balance full binary tree.
- \(\hat{h}(T) \geq \lfloor \log_2 k \rfloor \) in a balance full binary tree \(T \).
Why Balanced Trees are the Shortest?

- **Transform** a non-balanced tree to a balanced tree by **reducing** the height of tall leaves and **Increasing** the height of short leaves while preserving the number of leaves.

- Assume there are 2 leaves A and B of height x and one leaf C of height $x - 2$.

- **Replace** these 3 leaves with the parent D of A and B of height $x - 1$ and **move** A and B to be 2 new children of C of height $x - 1$.
The proofs follow since

- $x > x - 1$ for the **maximum** height.

- $(x - 2) + (x - 1) + 2x > 4(x - 1)$ for the **average** height.
Any deterministic sorting algorithm that sorts \(n \) keys can be represented by a comparison tree with \(n! \) leaves.

The height of the comparison tree is the worst case number of comparisons performed by the algorithm.

Lemma I implies that any deterministic sorting algorithm must perform \(\lceil \log_2(n!) \rceil = \Omega(n \log n) \) comparisons.
Any randomized sorting algorithm that sorts n keys can be represented by a comparison tree with $n!$ leaves.

The average height of the comparison tree is the average number of comparisons performed by the algorithm.

Lemma II implies that any randomized sorting algorithm must perform $\Omega(n \log n)$ comparisons.
Sort in Linear Time

Idea: Sort **without** comparisons using memory locations.

Complexity: Sometimes $o(n \log n)$ operations for sorting an array of n keys.

A contradiction? **No!**

- A **different** model.
- A **bounded** range for the keys.
Sort in Linear Time

Bucket & Counting Sort
- Integers from the range \([1..k]\).
- \(\Theta(n + k)\) operations.
- \(k = O(n)\)
 \(\Rightarrow\) \(\Theta(n)\) operations.
- \(k = o(n \log n)\)
 \(\Rightarrow\) **Better** than \(\Omega(n \log n)\).

Radix Sort
- Integers from the range \([1..k^d]\).
- \(\Theta(d(n + k))\) operations.
- \(k = O(n)\) and constant \(d\)
 \(\Rightarrow\) \(\Theta(n)\) operations.
- \(k = O(n)\) and \(d = o(\log n)\)
 \(\Rightarrow\) **Better** than \(\Omega(n \log n)\).
Bucket Sort

Input:
- Keys belong to a **bounded** domain of size k.

Idea: For each value between 1 and k, **count** the number of times it appears in A and then **rearrange** A.

Complexity: $\Theta(n + k)$ operations.
Bucket Sort – Implementation

Bucket-Sort($A[1], \ldots, A[n]$)

for $i = 1$ to k do $B[i] = 0$ (* prepare k empty buckets *)

for $j = 1$ to n do $B[A[j]] = B[A[j]] + 1$ (* fill the buckets *)

$j = 0$

for $i = 1$ to k do (* spill the buckets *)

while $B[i] > 0$ do (* spill the buckets *)

$j = j + 1$; $A[j] = i$; $B[i] = B[i] - 1$

Complexity: $\Theta(k) + \Theta(n) + \Theta(n) = \Theta(n + k)$.
A sorting algorithm is **stable**:
- If keys with the same values appear in the output array in the same order as they do in the input array.
- If \(A[i] \) is placed in \(A[i'] \) and \(A[j] \) is placed in \(A[j'] \) for \(i < j \), then \(A[i] = A[j] \) implies that \(i' < j' \).

Important when **satellite** data are carried with the keys.

Counting Sort is stable: **Crucial** for Radix Sort.

Most of the sorting algorithms can be implemented **stable**.
Counting Sort

Input:
- Keys belong to a bounded domain of size k.

Idea: A stable way to rearrange A.

Complexity: $\Theta(n + k)$ operations.
Counting Sort – Distinct Keys

Counting-Sort($A[1], \ldots, A[n]$)
for $i = 1$ to k do $C[i] = 0$
for $j = 1$ to n do $C[A[j]] = 1$
(* if $C[i] = 1$ then the key i is in A *)
for $i = 2$ to k do $C[i] = C[i] + C[i - 1]$
(* $C[i]$ – number of keys “$\leq i$” in A *)
(* $C[i]$ – new location of i in A *)
for $j = n$ downto 1 do $B[C[A[j]]] = A[j]$
for $j = 1$ to n do $A[j] = B[j]$

Complexity: $\Theta(k) + \Theta(n) + \Theta(k) + \Theta(n) + \Theta(n) = \Theta(n + k)$.
Counting Sort: Arbitrary Keys

for $i = 1$ to k do $C[i] = 0$

for $j = 1$ to n do $C[A[j]] = C[A[j]] + 1$

(* $C[i]$ – number of keys “$= i$” in A *)

for $i = 2$ to k do $C[i] = C[i] + C[i-1]$

(* $C[i]$ – number of keys “$\leq i$” in A *)

(* $C[i]$ – new location of last i in A *)

for $j = n$ downto 1 do

$B[C[A[j]]] = A[j]$

$C[A[j]] = C[A[j]] - 1$

(* $C[i]$ – new location of current i in A *)

for $j = 1$ to n do $A[j] = B[j]$

Complexity: $\Theta(n + k)$ – the same as for distinct keys.
Tuples as Keys

For positive integers d, k:

- A key is a tuple $\langle d_1, \ldots, d_d \rangle$ of d digits.
- Digits from the range $[1..k]$.
- Keys from the range $[1..k^d]$.
- d_1 is the most significant digit.
- d_d is the least significant digit.
Lexicographic Order of Tuples

\[\langle d_1, \ldots, d_d \rangle < \langle d'_1, \ldots, d'_d \rangle \]

if \(d_1 < d'_1 \) \quad 1999\ldots < 2012\ldots

or \(d_1 = d'_1 \) and \(d_2 < d'_2 \) \quad 2399\ldots < 2412\ldots

\vdots

or \(\forall 1 \leq i < j < d \ d_i = d'_i \) and \(d_j < d'_j \) \quad 12\ldots9598\ldots < 12\ldots9612\ldots

\vdots

or \(\forall 1 \leq i < d \ d_i = d'_i \) and \(d_d < d'_d \) \quad 12\ldots8 < 12\ldots9
Lexicographic Sort of Tuples

$$\text{Lexicographic-Sort}(A[1], \ldots, A[n])$$

for $i = 1$ to d do
 sort A on digit i.

Correctness: By definition of lexicographic order.

Implementation: A complicate memory handling.

Complexity: $\Theta(d(n + k))$ using Counting-Sort.
Radix Sort of Tuples

Radix-Sort \((A[1], \ldots, A[n])\)

 for \(i = d\) downto 1 do
 apply a stable sort to sort \(A\) on digit \(i\).

Correctness: By induction on the digit being sorted relying on the stability of the digit sort.

Implementation: Easy due to the stability of the digit sorting.

Complexity: \(\Theta(d(n + k))\) using Counting-Sort.
Example

<table>
<thead>
<tr>
<th>4555</th>
<th>1741</th>
<th>1629</th>
<th>6168</th>
<th>1629</th>
</tr>
</thead>
<tbody>
<tr>
<td>4432</td>
<td>4432</td>
<td>4432</td>
<td>2173</td>
<td>1741</td>
</tr>
<tr>
<td>3345</td>
<td>7942</td>
<td>9733</td>
<td>2199</td>
<td>2173</td>
</tr>
<tr>
<td>7942</td>
<td>2173</td>
<td>1741</td>
<td>8258</td>
<td>2199</td>
</tr>
<tr>
<td>6168</td>
<td>9733</td>
<td>7942</td>
<td>3345</td>
<td>3345</td>
</tr>
<tr>
<td>2173</td>
<td>4555</td>
<td>3345</td>
<td>4432</td>
<td>4432</td>
</tr>
<tr>
<td>1741</td>
<td>3345</td>
<td>4555</td>
<td>4555</td>
<td>4555</td>
</tr>
<tr>
<td>1629</td>
<td>6168</td>
<td>8258</td>
<td>1629</td>
<td>6168</td>
</tr>
<tr>
<td>9733</td>
<td>8258</td>
<td>6168</td>
<td>9733</td>
<td>7942</td>
</tr>
<tr>
<td>8258</td>
<td>1629</td>
<td>2173</td>
<td>1741</td>
<td>8258</td>
</tr>
<tr>
<td>2199</td>
<td>2199</td>
<td>2199</td>
<td>7942</td>
<td>9733</td>
</tr>
</tbody>
</table>
Radix Sort – Correctness

Induction claim: After sorting digit i, the suffixes of length $d - i + 1$ of all n tuples are sorted.

Verifying the claim for $i = d$: By definition of sorting.

Induction hypothesis: Claim is true for length $d - i$ suffixes.

Induction step: Due to the stability of the digit sort, the induction claim is true for suffixes of length $d - i + 1$.
Radix Sort of Integers

- Keys: Tuples of d digits each from the range [1..k].
- Set $k = O(n)$.
- Keys are integers from the range [1..$(O(n))^d$].
- $\Theta(d(n + k))$ complexity becomes $\Theta(dn)$ complexity.
- Constant d implies a linear time algorithm.
- Counting-Sort is linear only for a range [1..$O(n)$].