Discrete Math

Quiz: Prerequisite

Name: ...
Id: ..

<table>
<thead>
<tr>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
1. Identify the five components of the famous formula $e^{\pi i} - 1 = 0$

(a) The additive identity: ______
(b) The square root of -1: ______
(c) The multiplicative identity: ______
(d) The base of the natural logarithmic: ______
(e) The ratio of a circle’s circumference to its diameter: ______

2. Order the following five numbers in an increasing order: $e, \sqrt{2}, \phi, 1, \pi$. By definition, e is the base of the natural logarithm, ϕ is the golden ratio, and π is the ratio of a circle’s circumference to its diameter.

 ____ < ____ < ____ < ____ < ____

3. Let A be the set of all the prime numbers between 10 and 30. Let B be the set of all integers between 10 and 30 that are of the form $3k + 2$ for some integer k. Find the following sets:

(a) $A =$ __________________________
(b) $B =$ __________________________
(c) $A \cup B =$ __________________________
(d) $A \cap B =$ __________________________
(e) $A \setminus B =$ __________________________
(f) $B \setminus A =$ __________________________

4. Find all possible True and False assignments for the 3 variables x, y, z (out of the possible 8 assignments) that satisfy the following formula:

$$(x \lor y) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z})$$

5. Expand the following expressions:

(a) $(x + y)^2 =$ __________________________
(b) $(x - y)^2 =$ __________________________
(c) $(x + y)^3 =$ __________________________
(d) $(x - y)^3 =$ __________________________
6. Factor the following expressions:
 (a) \(x^2 - y^2 = \) ________________
 (b) \(x^3 - y^3 = \) ________________
 (c) \(x^3 + y^3 = \) ________________

7. Simplify the following expressions:
 (a) \(\frac{(n+1)!}{(n-1)!} = \) ________________
 (b) \(\left\lfloor \frac{n}{k} \right\rfloor \times k + (n \mod k) = \) ________________
 (c) \(x^n \times x^m = \) ________________
 (d) \(x^n \times y^n = \) ________________
 (e) \(\frac{\log_a(x^n)}{\log_a(x)} = \) ________________

8. Answer the following questions:
 (a) If \(\log_a(y) = x \), then \(a^x = \) ________________
 (b) If \(\log_a(x) + \log_a(y) = \log_a(z) \), then \(z = \) ________________
 (c) If \(x < 0 \), then \(|x| + |−x| = \) ________________

9. Let \(x = 126 \) and \(y = 60 \).
 (a) What is the Greatest Common Divisor (GCD) of \(x \) and \(y \)? ________________
 (b) What is the Least Common Multiplier (LCM) of \(x \) and \(y \)? ________________

10. Order the following functions from the slowest to the fastest when \(n \) tends to infinity:
 \(n^2 \); \(\log(n) \); \(n \); \(2^n \); \(n^n \)

11. Based on the following two linear equations, find the value of \(x \) and \(y \) as a function of \(a \).
 \[x + y = a \]
 \[2x + 5y = 0 \]
12. What are the roots of the quadratic equations \(ax^2 + bx + c = 0 \)?

13. Let \(0 \leq x \leq 1 \) be a real number and let \(f(x) = \lfloor x \rfloor + \lceil x \rceil \). For which values of \(x \), \(f(x) < 1 \), \(f(x) = 1 \), and \(f(x) > 1 \)?

14. Find the sum of the following sequences:

 (a) \(1 + 2 + 3 + \cdots + n = \)

 (b) \(1 + 2 + 4 + 8 + \cdots + 2^k = \)

15. When a fair coin is flipped, then both the probabilities of Head (H) and Tail (T) are \(\frac{1}{2} \). Three coins are flipped. What is the probability that

 (a) all are H or all are T:

 (b) there is exactly one H:

16. Let \(T \) be a right angle triangle with sides \(a \), \(b \), and \(c \) where \(c \) is the hypotenuse (the side opposite the right angle). Write \(c \) as a function of \(a \) and \(b \).

17. What is the sum of the degrees of all the inner angles of the following geometric shapes?

 (a) Triangle

 (b) Square
18. Let C be a circle whose radius is r.

(a) What is the circumference of C?

(b) What is the area of C?

19. Solve the following recursive formulas for $T(n)$. Express $T(n)$ as a function of n.

(a) $n \geq 1$ is an integer.

\[
T(1) = 1 \\
T(n) = T(n - 1) + 1
\]

(b) $n \geq 1$ is an integer.

\[
T(1) = 1 \\
T(n) = 2T(n - 1)
\]

20. What is the value of c when each procedure terminates?

(a) $f(n)$ (* $n > 0$ is an integer number *)

\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad \quad c := c + 1
\]

(b) $f(n)$ (* $n > 0$ is an integer number *)

\[
c = 1 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad c := c \times 2
\]