Name: ...
1. (a) Fill in the following table with one of the three: O, Ω, Θ.

Remark: If $f = \Theta(g)$ then $f = O(g)$ and $f = \Omega(g)$ are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$</th>
<th>$???$</th>
<th>$g(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>n</td>
<td>O</td>
<td>n^2</td>
</tr>
<tr>
<td>b</td>
<td>n^2</td>
<td>Ω</td>
<td>n</td>
</tr>
<tr>
<td>c</td>
<td>$2n$</td>
<td>Θ</td>
<td>$5n$</td>
</tr>
<tr>
<td>d</td>
<td>$1000000n$</td>
<td>Θ</td>
<td>$(1/100000)n$</td>
</tr>
<tr>
<td>e</td>
<td>$\log_2(n)$</td>
<td>O</td>
<td>$\log_2^2(n)$</td>
</tr>
<tr>
<td>f</td>
<td>$\log_2(n)$</td>
<td>Θ</td>
<td>$\log_{10}(n)$</td>
</tr>
<tr>
<td>g</td>
<td>$n \log_2(n)$</td>
<td>Ω</td>
<td>$n/\log_2(n)$</td>
</tr>
<tr>
<td>h</td>
<td>2^n</td>
<td>Ω</td>
<td>n^{100}</td>
</tr>
<tr>
<td>i</td>
<td>2^n</td>
<td>O</td>
<td>3^n</td>
</tr>
<tr>
<td>j</td>
<td>2^n</td>
<td>O</td>
<td>$n!$</td>
</tr>
</tbody>
</table>

(b) Which of the following 10 functions are $O(n)$? Which are $\Omega(n)$? Which are $\Theta(n)$?

Remark: If $f = \Theta(n)$ then $f = O(n)$ and $f = \Omega(n)$ are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$</th>
<th>$???$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2^n</td>
<td>Ω</td>
</tr>
<tr>
<td>b</td>
<td>n^2</td>
<td>Ω</td>
</tr>
<tr>
<td>c</td>
<td>$2n$</td>
<td>Θ</td>
</tr>
<tr>
<td>d</td>
<td>$n/\log_2(n)$</td>
<td>O</td>
</tr>
<tr>
<td>e</td>
<td>$\log_2(n)$</td>
<td>O</td>
</tr>
<tr>
<td>f</td>
<td>$100 \log_2(n) \log_2(n)$</td>
<td>O</td>
</tr>
<tr>
<td>g</td>
<td>$n \log_2(n)$</td>
<td>Ω</td>
</tr>
<tr>
<td>h</td>
<td>$10^{10}n/100^{100}$</td>
<td>Θ</td>
</tr>
<tr>
<td>i</td>
<td>n^π</td>
<td>Ω</td>
</tr>
<tr>
<td>j</td>
<td>$n!$</td>
<td>Ω</td>
</tr>
</tbody>
</table>
2. Express the value of c when each of the following procedures terminates with the Θ-notation.

(a) $f(n)$ (* $n = k^2$ is a positive square integer *)
\[
c = 0
for i = 1 to n do
if i is a square number
then $c := c + 1$
\]
Answer: $c = \sqrt{n} = \Theta(n^{1/2})$.
Explanation: c is incremented only when i is a square number. That is, for $n = k^2$, c is incremented when $i = 1, 4, 9, \ldots, (k - 1)^2, k^2$. The final value of c is $k = \sqrt{n}$ because there are exactly k square integers between 1 and k^2.

(b) $f(n)$ (* $n > 1000$ is a power of 2 *)
\[
c = 0
while n > 512 do
\quad n := n/2
\quad c := c + 1
\]
Answer: $\log_2 n - 9 = \Theta(\log n)$.
Explanation: Assume $n = 2^k$. Since $n > 1000$ it follows that $k \geq 10$. Each time c is incremented by 1, n is divided by 2. Therefore, the values of n are: $2^k, 2^{k-1}, \ldots, 2^9$. Once $n = 2^9$ the while loop stops because $512 = 2^9$. Therefore, c is incremented $k - 9$ times. The answer is $\log_2 n - 9$ because $k = \log_2 n$.
3. Let $A = A[1], A[2], \ldots, A[n]$ be an unsorted array containing n distinct integers. For $n \geq 3$, describe an efficient algorithm that finds an integer in A that is neither the smallest integer in A nor the largest integer in A. What is the complexity of your algorithm?

Idea: It is enough to consider only three integers from the array and find their median. Since all the integers in A are distinct, it follows that this median is neither the smallest integer in A nor the largest integer in A.


```plaintext
Sort(A[1], A[2], A[3])
```

Complexity: Since the sorting is done with at most three comparisons, it follows that the complexity of this algorithm is $\Theta(1)$.

Remark: There is no need to sort A with a $\Theta(n \log n)$-algorithm or to find the smallest and the largest integers in A with a $\Theta(n)$-algorithm.
4. Let \(A = A[1] < A[2] < \cdots < A[n] \) be a sorted array containing \(n \) distinct negative and positive integers. Describe an efficient algorithm that finds, if it exists, an index \(1 \leq i \leq n \) such that \(A[i] = i \). What is the complexity of your algorithm?

A trivial linear complexity algorithm: For all indices \(1 \leq i \leq n \), check if \(A[i] = i \). If such an index is found, return it. Otherwise, after learning that \(A[n] \neq n \), return a message that such an index does not exist.

Algorithm \(\mathcal{X}(A) \):

   ```
   for \( i = 1 \) to \( n \) do
     if \( A[i] = i \) then return \( i \)
     return ("A[i] \neq i for all indices 1 \leq i \leq n in A")
   ```

Algorithm \(\mathcal{X} \) is correct because by inspecting all the \(n \) indices in \(A \), it cannot miss, if it exists, an index \(i \) for which \(A[i] = i \).

The complexity of algorithm \(\mathcal{X} \) is \(\Theta(n) \) because in the worst-case the algorithm needs to examine all the \(n \) entries in the array with complexity \(\Theta(1) \) for each entry.

Observation: \(A[i + 1] − (i + 1) \geq A[i] − i \) for \(1 \leq i < n \).

A linear complexity algorithm with \(\Theta(\log n) \) comparisons: Define an array \(B \) such that \(B[i] = A[i] - i \) for \(1 \leq i \leq n \). It follows that if \(B[i] = 0 \) for some \(1 \leq i \leq n \) then \(A[i] = i \). The above observation implies that \(B[1] \leq B[2] \leq \cdots \leq B[n] \). Use Binary-Search to find if 0 appears in the array \(B \). Return the index \(i \) if there exists \(1 \leq i \leq n \) such that \(B[i] = 0 \). Otherwise return the message \(A[i] \neq i \) for all \(1 \leq i \leq n \).

Algorithm \(\mathcal{Y}(A) \):

   ```
   for \( i = 1 \) to \( n \) do 
     \( B[i] = A[i] - i \)
     \( i = \text{Binary-Search}(B, 0) \)
     if \( A[i] = i \) then return \( i \)
     else return ("A[i] \neq i for all indices 1 \leq i \leq n in A")
   ```

By definition of the array \(B \), it follows that if \(B[i] = 0 \) for some \(1 \leq i \leq n \) then \(A[i] = i \). Since \(B \) is sorted, the Binary-Search procedure finds the smallest index \(i \) such that \(B[i] = 0 \). On the other hand, if 0 is not in \(B \) then the Binary-Search procedure returns an index \(i \) for which \(B[i] \neq 0 \) and therefore \(A[i] \neq i \). In this case, algorithm \(\mathcal{Y} \) returns a negative message. Both arguments prove that algorithm \(\mathcal{Y} \) is correct.

Algorithm \(\mathcal{Y} \) is using \(\Theta(\log n) \) comparisons which is the complexity of the Binary-Search procedure. However, the overall complexity of the algorithm is \(\Theta(n) \) since the for loop that defines the array \(B \) has \(n \) iterations.
A $\Theta(\log n)$ algorithm: There is no need for array B. The comparison $B[i] = 0$ is equivalent to the comparison $A[i] = i$. Therefore, the Binary-Search procedure can be modified to run directly on the array A.

Algorithm $Z(A)$:

1. $\ell = 1$
2. $u = n$
3. while $\ell \leq u$
4. \hspace{1em} $m = \left\lfloor \frac{u + \ell}{2} \right\rfloor$
5. \hspace{1em} Case $A[m] = m$ then return(m)
6. \hspace{1em} Case $A[m] > m$ then $u = m - 1$
7. \hspace{1em} Case $A[m] < m$ then $\ell = m + 1$
8. \hspace{1em} return("$A[i] \neq i$ for all indices $1 \leq i \leq n$ in A")

Algorithm Z is correct because it is equivalent to algorithm Y.

The while loop in algorithm Z has at most $\lceil \log n \rceil$ iterations the same number of iterations that the Binary-Search procedure has. The complexity of algorithm Z is $\Theta(\log n)$ since the complexity of each iteration is $\Theta(1)$.

6
5. Let $A = A[1] \leq A[2] \leq \cdots \leq A[n]$ be a sorted array of n integers. Let k be an integer. Describe an efficient algorithm that finds the number of times k appears in the array. What is the complexity of your algorithm?

A trivial linear complexity algorithm: Count the number of indices for which $A[i] = k$ by scanning the whole array.

Algorithm $\mathcal{X}(A)$:

- $Count = 0$
- for $i = 1$ to n do
 - if $A[i] = k$
 - then $Count = Count + 1$
 - return (“k appears $Count$ times in A”)

Algorithm \mathcal{X} is correct because it examines all the integers in the array A.

There are n iterations of the for loop in algorithm \mathcal{X} and the complexity of each iteration is $\Theta(1)$. Therefore, the complexity of algorithm \mathcal{X} is $\Theta(n)$.

Assumption: When the Binary-Search procedure is looking to find a key in an array, it returns its first location if it appears at least once in the array. Otherwise it returns 0 if $k < A[1]$, returns n if $A[n] < k$, and returns the index i for which $A[i] < k < A[i+1]$. The complexity of this version of Binary-Search is still $\Theta(\log n)$.

Algorithm $\mathcal{Y}(A)$:

- Run Binary-Search to find if k appears in A.
- If k does not appear in A:
 - return (“k appears 0 times in A”).
- Otherwise, assume $A[i] = k$ while $A[i-1] < k$ or $i = 1$.
- Run Binary-Search to find if $k + 1$ appears in the sub array $A[i+1] \leq \cdots \leq A[n]$.
 - return (“k appears $(j - i + 1)$ times in A”).
- Otherwise, the Binary-Search returns j such that $A[j] = k$ and $A[j+1] > k + 1$. As in the previous case:
 - return (“k appears $(j - i + 1)$ times in A”).

The high level description of algorithm \mathcal{Y} explains why algorithm \mathcal{Y} is correct.

The complexity of algorithm \mathcal{Y} is $\Theta(\log n)$ which is the complexity of two executions of the Binary-Search procedure.

Remark: Consider the following variation of algorithm \mathcal{Y} called algorithm, \mathcal{Z}. After finding that the first appearance of k is in $A[i]$, algorithm \mathcal{Z} counts the number of appearances of k in A sequentially. Assume $A[i] = k$ for some $1 \leq i \leq n$. Then algorithm \mathcal{Z} checks if $A[i+1] = k$, $A[i+2] = k$, \ldots until it finds j such that $A[j+1] > k$ or until $j = n$. Then algorithm \mathcal{Z} returns that k appears $(j - i + 1)$ times in A. While algorithm \mathcal{Z} is more efficient than algorithm \mathcal{Y} when $(j-i+1)$ is small, in the worst case when $(j-i+1) = \Theta(n)$, the complexity of algorithm \mathcal{Z} is $\Theta(n)$.

7

Example: For $n = 11$, $k = 47$, and $A = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]$, the output is 6 and 8 because $A[6] + A[8] = 13 + 34 = 47$. However, for $k = 59$ the answer should be that such indices do not exist.

What is the complexity (number of comparisons) of your algorithm?

A trivial quadratic complexity algorithm: For each $1 \leq i \leq n$, check if $A[i] + A[j] = k$ for all $i \leq j \leq n$.

Algorithm $\mathcal{X}(A)$:

```plaintext
for $i = 1$ to $n - 1$ do
    for $j = i + 1$ to $n$ do
            then return $((i, j))$
    return "$k$ is not the sum of two different integers from $A$"
```

Algorithm \mathcal{X} is correct because it examines all possible pairs of integers in the array A.

There are $(n - 1) + (n - 2) + \cdots + 1 = \frac{(n-1)n}{2} = \Theta(n^2)$ iterations of the two for loops in algorithm \mathcal{X} and the complexity of each iteration is $\Theta(1)$. Therefore, the complexity of algorithm \mathcal{X} is $\Theta(n^2)$.

A binary search based algorithm: For each $1 \leq i \leq n$, use the Binary-Search procedure to check if $k - A[i]$ appears in A. Recall, that if x appears in A, then the Binary-Search procedure returns the index j such that $A[j] = x$.

Algorithm $\mathcal{Y}(A)$:

```plaintext
for $i = 1$ to $n$ do
    $j = \text{Binary-Search}(A, (k - A[i]))$
        then return $((i, j))$
    return "$k$ is not the sum of two different integers from $A$"
```

Algorithm \mathcal{Y} is correct because if $A[j] + A[j] = k$ then $A[j] = k - A[i]$ and the binary search procedure would find this index j.

The complexity of each iteration of algorithm \mathcal{Y} is $\Theta(\log n)$ – the same as the complexity of the Binary-Search procedure. Since there are n iterations, it follows that the complexity of algorithm \mathcal{Y} is $\Theta(n \log n)$.

Observation: For $1 \leq i < j \leq n$,

Proof: Both statements follow because the array A contains n distinct integers that are sorted in ascending order.

A linear complexity algorithm: Maintain two indices $1 \leq i < j \leq n$, starting with $i = 1$ and $j = n$, such that if $A[i'] + A[j] = k$ then it must be the case that $i \leq i' < j' \leq j$. If $A[i] + A[j] = k$ then return the indices i and j. Otherwise, increment i by 1 if $A[i] + A[j] < k$ or decrement j by 1 if $A[i] + A[j] > k$. Return an unsucessful message once $i = j$.

Algorithm $Z(A)$:

```plaintext
i = 1
j = n
while i < j do
  case A[i] + A[j] = k then return((i, j))
  case A[i] + A[j] < k then i = i + 1
  case A[i] + A[j] > k then j = j - 1
return("k is not the sum of two different integers from A")
```

Algorithm Z is correct with a proof by induction on $n - (j - i)$ that during the run of the algorithm, for $1 \leq i < j \leq n$, if $A[i'] + A[j'] = k$ then necessarily $i \leq i' < j' \leq j$. The base case is when $i = 1$ and $j = n$ and therefore $n - (j - i) = 1$. In this case, clearly if $A[i] + A[j] = k$ then $1 \leq i' < j' \leq n$ because these are the only possible values for i' and j'. The inductive step is correct due to the above observation.

- Case $A[i] + A[j] < k$: By the observation, there is no $j' < j$ such that $A[i] + A[j'] = k$ therefore i is incremented.
- Case $A[i] + A[j] > k$: By the observation, there is no $j' > i$ such that $A[i'] + A[j] = k$ therefore j is decremented.

There are at most n iterations in the while loop of algorithm Z. This is because the value pf $j - i$ is initially $n - 1$ and after each unsuccessful iteration it is decremented by one until it becomes zero. The complexity of algorithm Z is $\Theta(n)$ since the complexity of each iteration is $\Theta(1)$.

A trivial quadratic complexity algorithm: For each $1 \leq i \leq n$ check if $A[i] > B[j]$ for all $1 \leq j \leq n$.

Algorithm $X(A, B)$:

$\begin{align*}
\text{Count} &= 0 \\
\text{for } i &= 1 \text{ to } n \do \\
\text{ for } j &= 1 \text{ to } n \do \\
\text{ if } A[i] &= B[j] \\
\text{ then } \text{Count} &= \text{Count} + 1
\end{align*}$

return(Count)

Algorithm X is correct because it examines all n^2 possible pairs of integers one from A and one from B.

There are exactly n^2 iterations of the two for loops in algorithm X and the complexity of each iteration is $\Theta(1)$. Therefore, the complexity of algorithm X is $\Theta(n^2)$.

A binary search based algorithm: For each $1 \leq i \leq n$, use the Binary-Search procedure to find an index $0 \leq j \leq n$ such that either $B[j] < A[i] < B[j+1]$ for $1 \leq j \leq n-1$, or $A[i] > B[n]$ and then $j = n$, or $A[i] < B[1]$ and then $j = 0$. Recall, that if x does not appear in A, then the Binary-Search procedure returns the index j such that $B[j] < x < B[j+1]$ if $B[1] < x < B[n]$, returns n if $x > B[n]$, and returns 0 if $x < B[1]$.

Algorithm $Y(A, B)$:

$\begin{align*}
\text{Count} &= 0 \\
\text{for } i &= 1 \text{ to } n \do \\
\quad j &= \text{Binary-Search}(B, A[i]) \\
\quad \text{Count} &= \text{Count} + j
\end{align*}$

return(Count)

Algorithm Y is correct because $A[i]$ by definition is not in B for $1 \leq i \leq n$ and the index j returned by the Binary-Search procedure is exactly the number of integers in B that are smaller than $A[i]$.

The complexity of each iteration of algorithm Y is $\Theta(\log n)$ – the same as the complexity of the Binary-Search procedure. Since there are n iterations, it follows that the complexity of algorithm Y is $\Theta(n \log n)$.

10
Notations: Let $B[0] = 0$ and $B[n + 1] = 1 + \max \{A[n], B[n]\}$. It follows that $B[0]$ is smaller than all the $2n$ distinct integers from A and B while $B[n + 1]$ is larger than all the $2n$ distinct integers from A and B.

Observation: For $1 \leq i \leq n$, let $0 \leq j(i) \leq n$ be the index in $B[0..n + 1]$ such that $B[j(i)] < A[i] < B[j(i) + 1]$. Then,

$$0 \leq j(1) \leq j(2) \leq \cdots \leq j(n) \leq n$$

Proof: First note that for all $1 \leq i \leq n$ since $B[0] < A[i] < B[n + 1]$ it follows that $0 \leq j(i) \leq n$. Fix $1 \leq i \leq n - 1$. Since $A[i] < A[i + 1]$ it follows that $j(i) \leq j(i + 1)$.

Corollary:

$$Count = j(1) + j(2) + \cdots + j(n)$$

Proof: There are exactly $j(i)$ integers in B that are smaller than $A[i]$.

A linear complexity algorithm: Maintain two indices $1 \leq i \leq n$ and $0 \leq j \leq n$, starting with $i = 1$ and $j = 0$. For a given i, increment j by 1 as long as $j < j(i)$ until $j = j(i)$ (equivalently, $A[i] < B[j + 1]$). Next update $Count$ by adding to it $j(i)$ and increment i by 1. Return the value of $Count$ once $i = n + 1$.

Algorithm $Z(A, B)$:

```
j = 0
for i = 1 to n do
    while (A[i] > B[j + 1]) do j = j + 1
    Count = Count + j
return(Count)
```

Algorithm Z is correct with a proof by induction that for any $1 \leq i \leq n$, at the end of the ith iteration of the for loop, $Count = j(1) + j(2) + \cdots + j(i)$. As a result, after the nth iteration, $Count = j(1) + j(2) + \cdots + j(n)$. By the above corollary, this is the correct value of $Count$.

Assume $j(0) = 0$. Fix $1 \leq i \leq n$. The complexity of the ith iteration of the for loop in algorithm Z is $\Theta(j(i) - j(i - 1))$. Therefore, the complexity of algorithm Z is

$$\Theta(j(1) - j(0)) + \Theta(j(2) - j(1)) + \cdots + \Theta(j(n) - j(n - 1))$$

Since

$$(j(1) - j(0)) + (j(2) - j(1)) + \cdots + (j(n) - j(n - 1)) = j(n) - j(0) = j(n) \leq n$$

it follows that the complexity of algorithm Z is $\Theta(n)$.