Discrete Structures

Modular Arithmetic Practice Problems: solutions

1. Compute \((1001 \mod d)\) for \(d = 2, 3, \ldots, 10\).

\[
\begin{align*}
1001 &= 500 \cdot 2 + 1 \implies (1001 \mod 2) = 1 \\
1001 &= 333 \cdot 3 + 2 \implies (1001 \mod 3) = 2 \\
1001 &= 250 \cdot 4 + 1 \implies (1001 \mod 4) = 1 \\
1001 &= 200 \cdot 5 + 1 \implies (1001 \mod 5) = 1 \\
1001 &= 166 \cdot 6 + 5 \implies (1001 \mod 6) = 5 \\
1001 &= 143 \cdot 7 + 0 \implies (1001 \mod 7) = 0 \\
1001 &= 125 \cdot 8 + 1 \implies (1001 \mod 8) = 1 \\
1001 &= 111 \cdot 9 + 2 \implies (1001 \mod 9) = 2 \\
1001 &= 100 \cdot 10 + 1 \implies (1001 \mod 10) = 1 \\
\end{align*}
\]

Compute \((1001^2 \mod d)\) for \(d = 2, 3, \ldots, 10\).

\[
\begin{align*}
(1001^2 \mod 2) &= ((1001 \mod 2)^2 \mod 2) = (1^2 \mod 2) = 1 \\
(1001^2 \mod 3) &= ((1001 \mod 3)^2 \mod 3) = (2^2 \mod 3) = 1 \\
(1001^2 \mod 4) &= ((1001 \mod 4)^2 \mod 4) = (1^2 \mod 4) = 1 \\
(1001^2 \mod 5) &= ((1001 \mod 5)^2 \mod 5) = (1^2 \mod 5) = 1 \\
(1001^2 \mod 6) &= ((1001 \mod 6)^2 \mod 6) = (5^2 \mod 6) = 1 \\
(1001^2 \mod 7) &= ((1001 \mod 7)^2 \mod 7) = (0^2 \mod 7) = 0 \\
(1001^2 \mod 8) &= ((1001 \mod 8)^2 \mod 8) = (1^2 \mod 8) = 1 \\
(1001^2 \mod 9) &= ((1001 \mod 9)^2 \mod 9) = (2^2 \mod 9) = 4 \\
(1001^2 \mod 10) &= ((1001 \mod 10)^2 \mod 10) = (1^2 \mod 10) = 1 \\
\end{align*}
\]
2. Definition: \(m \) is the \textbf{inverse} of \(n \) modulo \(d \) if \((nm \mod d) = 1 \).

Find the inverse of \(n = 2, 3, \ldots, 10 \) modulo 11 if exist.

\[
\begin{align*}
2 \cdot 6 &= 12 = 1 \cdot 11 + 1 \quad \implies \quad (2^{-1} \mod 11) = 6 \\
3 \cdot 4 &= 12 = 1 \cdot 11 + 1 \quad \implies \quad (3^{-1} \mod 11) = 4 \\
4 \cdot 3 &= 12 = 1 \cdot 11 + 1 \quad \implies \quad (4^{-1} \mod 11) = 3 \\
5 \cdot 9 &= 45 = 4 \cdot 11 + 1 \quad \implies \quad (5^{-1} \mod 11) = 9 \\
6 \cdot 2 &= 12 = 1 \cdot 11 + 1 \quad \implies \quad (6^{-1} \mod 11) = 2 \\
7 \cdot 8 &= 56 = 5 \cdot 11 + 1 \quad \implies \quad (7^{-1} \mod 11) = 8 \\
8 \cdot 7 &= 56 = 5 \cdot 11 + 1 \quad \implies \quad (8^{-1} \mod 11) = 7 \\
9 \cdot 5 &= 45 = 4 \cdot 11 + 1 \quad \implies \quad (9^{-1} \mod 11) = 5 \\
10 \cdot 10 &= 12 = 1 \cdot 11 + 1 \quad \implies \quad (10^{-1} \mod 11) = 10
\end{align*}
\]

Find the inverse of \(n = 2, 3, \ldots, 8 \) modulo 9 if exist.

\[
\begin{align*}
2 \cdot 5 &= 10 = 1 \cdot 9 + 1 \quad \implies \quad (2^{-1} \mod 9) = 5 \\
4 \cdot 7 &= 28 = 3 \cdot 9 + 1 \quad \implies \quad (4^{-1} \mod 9) = 7 \\
5 \cdot 2 &= 10 = 1 \cdot 9 + 1 \quad \implies \quad (5^{-1} \mod 9) = 2 \\
7 \cdot 4 &= 28 = 3 \cdot 9 + 1 \quad \implies \quad (7^{-1} \mod 9) = 4 \\
8 \cdot 8 &= 64 = 7 \cdot 9 + 1 \quad \implies \quad (8^{-1} \mod 9) = 8
\end{align*}
\]

- Both \((3n \mod 9)\) and \((6n \mod 9)\) are either \((0 \mod 9)\) or \((3 \mod 9)\) or \((6 \mod 9)\) for any integer \(n\). Therefore, neither 3 nor 6 have an inverse modulo 9.

- In general, if \(\gcd(n, d) \neq 1\) then \(n\) does not have an inverse modulo \(d\). Therefore, since \(\gcd(3, 9) = 3\) and \(\gcd(6, 9) = 3\), it follows that both 3 and 6 do not have an inverse modulo 9.
3. Euler’s Tution function: $\varphi(n)$ is the number of positive integers less than n that are relatively prime to n.

Proposition I: $\varphi(p) = p - 1$ for any prime number p.

Proposition II: $\varphi(p^k) = p^k - p^{k-1}$ for any positive integer k and a prime number p.

Proposition III: $\varphi(nm) = \varphi(n)\varphi(m)$ for any two relatively prime n and m $(\text{gcd}(n, m) = 1)$.

- 127 is a prime number. Therefore, by Proposition I,
 \[
 \varphi(127) = 127 - 1 = 126
 \]

- 625 = 5^4 and 5 is a prime number. Therefore, by Proposition II,
 \[
 \varphi(625) = \varphi(5^4) = 5^4 - 5^3 = 625 - 125 = 500
 \]

- 713 = $31 \cdot 23$ and $\text{gcd}(31, 23) = 1$ because both 31 and 23 are prime numbers. Therefore, by Propositions III and Proposition I,
 \[
 \varphi(713) = \varphi(31 \cdot 23) = \varphi(31) \cdot \varphi(23) = (31 - 1)(23 - 1) = 30 \cdot 22 = 660
 \]

- 360 = $2^3 \cdot 3^2 \cdot 5$ and 2, 3, and 5 are prime numbers. Therefore, by Propositions I, II, and III,
 \[
 \varphi(360) = \varphi(2^3 \cdot 3^2 \cdot 5) = \varphi(2^3) \cdot \varphi(3^2) \cdot \varphi(5) = (2^3 - 2^2) \cdot (3^2 - 3^1) \cdot 4 = 4 \cdot 6 \cdot 4 = 96
 \]
4. Modular exponentiation.

- Since $2^{100} = (2^2)^{50} = 4^{50}$ and $(4 \mod 3) = 1$, it follows that

\[
(2^{100} \mod 3) = (4^{50} \mod 3) \\
= ((4 \mod 3)^{50}) \mod 3 \\
= (1^{50}) \mod 3 \\
= (1 \mod 3) \\
= 1
\]

- Since $2^{100} = (2^4)^{25} = 16^{50}$ and $(16 \mod 5) = 1$, it follows that

\[
(2^{100} \mod 5) = (16^{25} \mod 5) \\
= ((16 \mod 5)^{25}) \mod 5 \\
= (125 \mod 5) \\
= (1 \mod 5) \\
= 1
\]

- Since $2^{100} = 2 \cdot (2^3)^{33} = 2 \cdot 8^{33}$ and $(8 \mod 7) = 1$, it follows that

\[
(2^{100} \mod 7) = ((2 \cdot 8^{33}) \mod 7) \\
= ((2 \mod 7) \cdot (8 \mod 7)^{33}) \mod 7 \\
= ((2 \cdot 1^{33}) \mod 7) \\
= (2 \mod 7) \\
= 2
\]

- 31 is a prime number, therefore $(19^{30} \mod 31) = 1$ by Fermat’s Little Theorem.

\[
(19^{90} \mod 31) = ((19^{30})^3 \mod 31) \\
= ((19^{30} \mod 31)^3 \mod 31) \\
= (1^3 \mod 31) \\
= (1 \mod 31) \\
= 1
\]

- $\gcd(47, 77) = 1$ and $\varphi(77) = \varphi(7) \cdot \varphi(11) = 6 \cdot 10 = 60$

Therefore, Euler’s Theorem implies that $(47^{60} \mod 77) = 1$.

\[
(47^{61} \mod 77) = ((47 \cdot 47^{60}) \mod 77) \\
= (((47 \mod 77) \cdot (47^{60} \mod 77)) \mod 77) \\
= ((47 \cdot 1) \mod 77) \\
= (47 \mod 77) \\
= 47
\]
5. Definition: gcd(n, m) is the largest positive integer that divides both n and m.

- Let $p \neq q$ be two different prime numbers. What is gcd(p, q)?
 Answer: Let $g = \text{gcd}(p, q)$. Since $g \mid p$ and $g \mid q$ and both p and q are prime numbers, it follows that the only candidates for the greatest common divisor of p and q are 1, p, and q. But $p \not| q$ and $q \not| p$. Therefore, gcd(p, q) = 1.

- Let k and h be two positive integers. What is gcd($2^k, 3^h$)?
 Answer: The only divisors of 2^k are powers of 2 and the only divisors of 3^h are powers of 3. As a result, 2^k and 3^h do not have a common divisor greater than 1. That is, gcd($2^k, 3^h$) = 1.

- Find gcd(1001, 4433) using the Euclid Algorithm.
 Answer: Euclid’s algorithm finds the gcd(4433, 1001) in three rounds.
 (a) The pair (4433, 1001) is replaced by the pair (1001, 429) since 4433 = 4·1001 + 429.
 (b) The pair (1001, 429) is replaced by the pair (429, 143) since 1001 = 2·429 + 143.
 (c) The algorithm terminates because 429 = 3·143.
 Indeed, the prime factorizations of both numbers are

 $\begin{align*}
 1001 & = 7 \cdot 11 \cdot 13 \\
 4433 & = 11 \cdot 13 \cdot 31
 \end{align*}$

 Therefore, gcd(1001, 4433) = 11 · 13 = 143.

- Find gcd(60, 84, 140).
 Answer: The prime factors of the three numbers are

 $\begin{align*}
 60 & = 2^2 \cdot 3 \cdot 5 \\
 84 & = 2^2 \cdot 3 \cdot 7 \\
 140 & = 2^2 \cdot 5 \cdot 7
 \end{align*}$

 As a result, only $4 = 2^2$ divides all three numbers. Therefore, gcd(60, 84, 140) = 4.
 Note that gcd(60, 84) = 12, gcd(60, 140) = 20, and gcd(84, 140) = 28. But the greatest common divisor of all three numbers is only 4.
6. Definition: \(\text{lcm}(n, m) \) is the least positive integer that is a multiple of both \(n \) and \(m \).

- Let \(p \neq q \) be two different prime numbers. What is \(\text{lcm}(p, q) \)?

 Answer: \(\text{lcm}(p, q) = p \cdot q \).

 Proof I: Let \(\ell = \text{lcm}(p, q) \). Since \(p \mid \ell \) and \(q \mid \ell \), it follows that \(\ell = k \cdot p = h \cdot q \) for some integers \(k \) and \(h \). Hence, \(p \mid h \cdot q \). Since \(p \) and \(q \) are prime numbers, it must be the case that \(p \mid h \). The smallest possible such \(h \) is \(h = p \).

 Proposition: \(n \cdot m = \text{lcm}(n, m) \cdot \gcd(n, m) \) for any two integers \(n \) and \(m \).

 Proof II: Both \(p \) and \(q \) are prime numbers and therefore \(\gcd(p, q) = 1 \). The above proposition implies that

 \[
 \text{lcm}(p, q) = \frac{p \cdot q}{\gcd(p, q)} = \frac{p \cdot q}{1} = p \cdot q
 \]

- What is \(\text{lcm}(35, 55, 65) \)?

 Answer: \(35 = 5 \cdot 7, 55 = 5 \cdot 11, \) and \(65 = 5 \cdot 13 \). Therefore,

 \[
 \text{lcm}(35, 55, 65) = 5 \cdot 7 \cdot 11 \cdot 13 = 5005
 \]

- What is the smallest positive integer \(n > 1 \) for which \((n \mod 10) = (n \mod 14) = 1 \)?

 Answer: Both \(10 \) and \(14 \) must divide \(n - 1 \). Therefore, the smallest positive integer is \(\text{lcm}(10, 14) + 1 \). The answer is \(n = 71 \) since

 \[
 \text{lcm}(10, 14) = \text{lcm}(2 \cdot 5, 2 \cdot 7) = 2 \cdot 5 \cdot 7 = 70
 \]

- Find the smallest positive integer \(n > 1 \) for which \((n \mod d) = 1 \) for all \(2 \leq d \leq 10 \).

 Answer: The nine integers \(2, 3, \ldots, 10 \) must divide \(n - 1 \). Therefore, the smallest positive integer is \(\text{lcm}(2, 3, 4, 5, 6, 78, 9, 10) + 1 \). The answer is \(n = 2521 \) since

 \[
 \text{lcm}(2, 3, 4, 5, 6, 7, 8, 9, 10) = \text{lcm}(6, 7, 8, 9, 10) = \text{lcm}(2 \cdot 3, 7, 2^3, 3^2, 2 \cdot 5) = 2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520
 \]

 \[
 \]