1. Assume a fair coin in which the probability for Head (H) and Tail (T) are both 1/2. Justify your answers.

(a) The fair coin is flipped 4 times.

What is the probability that exactly 2 out of the 4 outcomes are heads?

What is the probability that at least 2 out of the 4 outcomes are heads?

What is the probability that at most 2 out of the 4 outcomes are heads?
(b) The fair coin is flipped 5 times.

What is the probability that exactly 3 out of the 5 outcomes are heads?

What is the probability that at least 3 out of the 5 outcomes are heads?

What is the probability that at most 3 out of the 5 outcomes are heads?
(c) The fair coin is flipped $n \geq 2$ times. Write your answers as a function of n.

What is the probability that exactly one out of the n outcomes is head?

What is the probability that at least one out of the n outcomes is head?

What is the probability that at most one out of the n outcomes is head?
2. Assume a biased coin in which the probability for Head (H) is $2/3$ while the probability for Tail (T) is $1/3$. Justify your answers.

 (a) The biased coin is flipped 4 times.

 What is the probability that exactly 2 out of the 4 outcomes are heads?

 What is the probability that at least 2 out of the 4 outcomes are heads?

 What is the probability that at most 2 out of the 4 outcomes are heads?
(b) The biased coin is flipped 5 times.

What is the probability that **exactly** 3 out of the 5 outcomes are heads?

What is the probability that **at least** 3 out of the 5 outcomes are heads?

What is the probability that **at most** 3 out of the 5 outcomes are heads?
(c) The biased coin is flipped $n \geq 2$ times. Write your answers as a function of n.

What is the probability that **exactly** one out of the n outcomes is head?

What is the probability that **at least** one out of the n outcomes is head?

What is the probability that **at most** one out of the n outcomes is head?
3. Justify your answers to the following questions.

The fair coin is flipped 4 times. What is the probability that there were no consecutive heads and no consecutive tails?

The fair coin is flipped 5 times. What is the probability that there were no consecutive heads and no consecutive tails?

The fair coin is flipped \(n \geq 1 \) times. What is the probability, as a function of \(n \), that there were no consecutive heads and no consecutive tails?
The biased coin is flipped 4 times. What is the probability that there were no consecutive heads and no consecutive tails?

The biased coin is flipped 5 times. What is the probability that there were no consecutive heads and no consecutive tails?

The biased coin is flipped \(n \geq 1 \) times. What is the probability, as a function of \(n \), that there were no consecutive heads and no consecutive tails?

Remark: The answers are different for odd \(n \) and even \(n \).
4. In a regular fair 6-face dice with the numbers 1, 2, 3, 4, 5, 6 on its faces, the probability of throwing any of the 6 numbers is 1/6. Justify your answers.

What is the probability of getting exactly two 6 when three dice are thrown together?

What is the probability of getting exactly two 6 when four dice are thrown together?

What is the probability, as a function of \(n \), of getting exactly two 6 when \(n \geq 2 \) dice are thrown together?
What is the probability of getting at least one 6 when three dice are thrown together?

What is the probability of getting at least one 6 when four dice are thrown together?

What is the probability, as a function of n, of getting at least one 6 when $n \geq 1$ dice are thrown together?
5. In a fair 5-face dice with the numbers 1, 2, 3, 4, 5, the probability of throwing any of the 5 numbers is $1/5$. Justify your answers.

What is the probability of getting exactly two 5 when three dice are thrown together?

What is the probability of getting exactly two 5 when four dice are thrown together?

What is the probability, as a function of n, of getting exactly two 5 when $n \geq 2$ dice are thrown together?
What is the probability of getting at least one 5 when three dice are thrown together?

What is the probability of getting at least one 5 when four dice are thrown together?

What is the probability, as a function of n, of getting at least one 5 when $n \geq 1$ dice are thrown together?
A deck of cards contains 52 cards. There are 4 suits: 13 Black Clubs, 13 Red Diamonds, 13 Red Hearts, and 13 Black Spades. Each suit has one of the following 9 number cards: 2, 3, 4, 5, 6, 7, 8, 9, 10, one of the following 3 face cards: Jack (J), Queen (Q), and King (K), and one Ace (A). A bridge hand has 13 random cards out of the 52 cards.

Remark: There are \(\binom{52}{13} \) possible random bridge hands. Define \(x = \binom{52}{13} \). In your answers, you may use \(x \) and define other variables for other large numbers or other large binomial coefficients.

Justify your answers.

(a) What is the probability that all the 13 cards in a bridge hand are of the same suit?

(b) What is the probability that all the 13 cards in a bridge hand are red?
(c) What is the probability that a bridge hand contains only faces and aces?

(d) What is the probability that a bridge hand contains only small cards 2 to 10?

(e) What is the probability that a bridge hand does not contain an ace?
(f) What is the probability that a bridge hand contains all 4 aces?

(g) What is the probability that a bridge hand does not contain two of a kind?
7. A bag contains 16 marbles: 3 Blue marbles, 5 Red (R) marbles, and 8 Green (G) marbles. Justify your answers.

(a) After drawing a marble from the bag the marble is put aside.

What is the probability that 2 drawn marbles are of the same color?

What is the probability that 2 drawn marbles are of different color?

What is the probability that 3 drawn marbles are of the same color?

What is the probability that 3 drawn marbles are of different color?
(b) After drawing a marble from the bag the marble is put back in the bag.

What is the probability that 2 drawn marbles are of the same color?

What is the probability that 2 drawn marbles are of different color?

What is the probability that 3 drawn marbles are of the same color?

What is the probability that 3 drawn marbles are of different color?

What is the probability, as a function of \(n \), that \(n \geq 2 \) drawn marbles are of the same color?