CISC 2210 – Introduction to Discrete Structures

Solutions to the Midterm Project

1. 36 students take the Discrete Structures class. They had 3 quizzes called \(X\), \(Y\), and \(Z\).

- Surprisingly, only 1 student did not get an \(A\) on any quiz while the rest of the students got an \(A\) (aced) on at least one quiz.
- 21 students aced \(X\), 19 students aced \(Y\), and 17 students aced \(Z\).
- 9 students aced both \(X\) and \(Y\), 11 students aced both \(X\) and \(Z\), and 8 students aced both \(Y\) and \(Z\).

Answer: Let \(X\), \(Y\), and \(Z\) be the sets of students who aced quizzes \(X\), \(Y\), and \(Z\) respectively. The problem provides the sizes of the following sets: \(|X| = 21\), \(|Y| = 19\), \(|Z| = 17\), \(|X \cap Y| = 9\), \(|X \cap Z| = 11\), \(|Y \cap Z| = 8\), and \(|X \cup Y \cup Z| = 1\).

(a) How many students aced at least one quiz? \(|X \cup Y \cup Z| = 35\).

\[
|X \cup Y \cup Z| = 36 - |X \cup Y \cup Z| = 36 - 1 = 35
\]

(b) How many students aced all three quizzes? \(|X \cap Y \cap Z| = 6\).

- The principle of inclusion and exclusion implies that

\[
35 = |X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|
= 21 + 19 + 17 - 9 - 11 - 8 + |X \cap Y \cap Z|
= 29 + |X \cap Y \cap Z|
\]

- This is equivalent to \(|X \cap Y \cap Z| = 35 - 29 = 6\)

(c) How may students aced both \(X\) and \(Y\) but not \(Z\)? \(|X \cap Y \cap \bar{Z}| = 3\).

\[
|X \cap Y \cap \bar{Z}| = |X \cap Y| - |X \cap Y \cap Z| = 9 - 6 = 3
\]

(d) How may students aced both \(X\) and \(Z\) but not \(Y\)? \(|X \cap \bar{Y} \cap Z| = 5\).

\[
|X \cap \bar{Y} \cap Z| = |X \cap Z| - |X \cap Y \cap Z| = 11 - 6 = 5
\]

(e) How may students aced both \(Y\) and \(Z\) but not \(X\)? \(|\bar{X} \cap Y \cap Z| = 2\).

\[
|\bar{X} \cap Y \cap Z| = |Y \cap Z| - |X \cap Y \cap Z| = 8 - 6 = 2
\]

(f) How may students aced only \(X\)? \(|X \cap \bar{Y} \cap \bar{Z}| = 7\).

\[
|X \cap \bar{Y} \cap \bar{Z}| = |X| - |X \cap Y \cap \bar{Z}| - |X \cap \bar{Y} \cap Z| - |X \cap Y \cap Z| = 21 - 3 - 5 - 6 = 7
\]
(g) How may students aced only Y? $|\bar{X} \cap Y \cap \bar{Z}| = 8$.

$$|\bar{X} \cap Y \cap \bar{Z}| = |Y| - |X \cap Y \cap \bar{Z}| - |\bar{X} \cap Y \cap Z| - |X \cap Y \cap Z| = 19 - 3 - 2 - 6 = 8$$

(h) How may students aced only Z? $|\bar{X} \cap \bar{Y} \cap Z| = 4$.

$$|\bar{X} \cap \bar{Y} \cap Z| = |Z| - |X \cap \bar{Y} \cap Z| - |\bar{X} \cap Y \cap Z| - |X \cap Y \cap Z| = 17 - 5 - 2 - 6 = 4$$

$$36 = 6 + 3 + 2 + 5 + 7 + 8 + 4 + 1$$
2. Prove the following logic distributive law.

\[x \land (y \lor z \lor w) \equiv (x \land y) \lor (x \land z) \lor (x \land w) \]

Notations: Let \(L = x \land (y \lor z \lor w) \) and let \(R = (x \land y) \lor (x \land z) \lor (x \land w) \).

Proof outline: Consider the two options for \(x \).

- If \(x = F \) then \(L = F \) and \(R = F \) since each of its three clauses is false.
- If \(x = T \) then both \(L = F \) and \(R = F \) only if \(x = y = z = F \).

The two truth tables below evaluate \(L \) and \(R \) for all the \(2^4 = 16 \) possible assignments for the variables \(x, y, z, \) and \(w \). The distributive law is correct since the column for \(L = x \land (y \lor z \lor w) \) in the first table is identical to the column of \(R = (x \land y) \lor (x \land z) \lor (x \land w) \) in the second table.

| \(x \) | \(y \) | \(z \) | \(w \) | \((y \lor z \lor w) \) | \(L = x \land (y \lor z \lor w) \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

| \(x \) | \(y \) | \(z \) | \(w \) | \((x \land y) \) | \((x \land z) \) | \((x \land w) \) | \(R = (x \land y) \lor (x \land z) \lor (x \land w) \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>
3. Let \(S \subseteq U = \{2, 3, \ldots, 21\} \) be a non-empty set containing integers larger than 1 and smaller than 22. The following are three statements about \(S \):

(A) \(S \) does not contain prime numbers.

(B) \(S \) contains at least two even numbers.

(C) \(S \) contains at most two odd numbers.

In the following eight questions you are asked to find the smallest and the largest possible sets \(S_{\text{min}} \) and \(S_{\text{max}} \) for which some of the statements are TRUE and some of the statements are FALSE. \(S_{\text{min}} \) should contain the minimum possible number of members from \(U \) while \(S_{\text{max}} \) should contain the maximum possible number of members from \(U \).

(a) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which all three statements are TRUE.

\[
S_{\text{min}} = \{4, 6\} \quad S_{\text{max}} = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}
\]

(b) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statements \(A \) and \(B \) are TRUE but statement \(C \) is FALSE.

\[
S_{\text{min}} = \{4, 6, 9, 15, 21\} \quad S_{\text{max}} = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21\}
\]

(c) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statements \(A \) and \(C \) are TRUE but statement \(B \) is FALSE.

\[
S_{\text{min}} = \{4\} \quad S_{\text{max}} = \{4, 9, 15\}
\]

(d) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statements \(B \) and \(C \) are TRUE but statement \(A \) is FALSE.

\[
S_{\text{min}} = \{2, 4\} \quad S_{\text{max}} = \{2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20\}
\]

(e) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statement \(A \) is TRUE but statements \(B \) and \(C \) are FALSE.

\[
S_{\text{min}} = \{9, 15, 21\} \quad S_{\text{max}} = \{4, 9, 15, 21\}
\]

(f) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statement \(B \) is TRUE but statements \(A \) and \(C \) are FALSE.

\[
S_{\text{min}} = \{2, 3, 4, 5, 7\} \quad S_{\text{max}} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}
\]

(g) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which statement \(C \) is TRUE but statements \(A \) and \(B \) are FALSE.

\[
S_{\text{min}} = \{2\} \quad S_{\text{max}} = \{2, 3, 5\}
\]

(h) Find \(S_{\text{min}} \) and \(S_{\text{max}} \) for which all three statements are FALSE.

\[
S_{\text{min}} = \{3, 5, 7\} \quad S_{\text{max}} = \{2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21\}
\]
4. The goal is to count the number of passwords with repetitions of length 7 on the digits
\{0, 1, \ldots , 9\}. Note that unlike numbers, such passwords may start with a 0.
Recall that there are \(n^k \) lists with repetition of length \(k \) with objects from a size \(n \) set.

(a) How many passwords of length 7 are there?
 - A password is a list with repetition of length 7 from a set of size 10. Therefore, there
 are \(10^7 = 10000000 \) passwords.

(b) How many passwords of length 7 are there that contain only odd digits?
 - A password that contains only odd digits is a list with repetition of length 7 from a
 set of size 5. Therefore, there are \(5^7 = 78125 \) passwords.

(c) How many passwords of length 7 are there that do not contain the digit 0?
 - A password that does not contain the digit 0 is a list with repetition of length 7 from
 a set of size 9. Therefore, there are \(9^7 = 4782969 \) passwords.

(d) How many passwords of length 7 are there that contain the digit 0 at least once?
 - The set of such passwords is the complement of the set from part (c). Therefore there
 are \(10^7 - 9^7 = 5217031 \) such passwords.

(e) How many passwords of length 7 are there that contain the digit 0 exactly once?
 - There are 7 options for the location of the digit 0 in the password. For each option,
 the rest of the password is a list with repetition of length 6 from a set of size 9.
 Therefore, there are \(7 \cdot 9^6 = 3720087 \) such passwords.

(f) How many passwords of length 7 are there that contain the digit 0 at most once?
 - Such a password either does not contain the digit 0 or contains it exactly once. By
 parts (c) and and (e), the answer is \(9^7 + 7 \cdot 9^6 = 16 \cdot 9^6 = 8503056 \).

(g) How many passwords of length 7 are there that contain the digit 0 exactly twice?
 - There are \(\binom{7}{2} = \frac{7 \cdot 6}{2} = 21 \) options for the two locations of the digit 0 in the password.
 For each option, the rest of the password is a list with repetition of length 5 from a
 set of size 9. Therefore there are \(21 \cdot 9^5 = 1240029 \) such passwords.

(h) How many passwords of length 7 are there that contain the digit 0 exactly once and the
 digit 1 exactly once?
 - There are \(7 \cdot 6 = 42 \) options for the two locations of the digits 0 and 1 in the password.
 For each option, the rest of the password is a list with repetition of length 5 from a
 set of size 8. Therefore there are \(42 \cdot 8^5 = 1376256 \) such passwords.
5. Using the identity
\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]
simplify the following expression as a fraction with as few as possible terms
\[
\binom{m}{3} + \binom{m+1}{3} + \binom{m+2}{3}
\]

Answer: Observe that since \(\frac{n!}{(n-3)!} = n(n-1)(n-2)\) it follows that
\[
\binom{n}{3} = \frac{n!}{3!(n-3)!} = \frac{n(n-1)(n-2)}{6}
\]
The simplification follows by replacing \(n\) with \(m\), \((m+1)\), and \((m+2)\) and applying algebra rules.

\[
\binom{m}{3} + \binom{m+1}{3} + \binom{m+2}{3} = \frac{m(m-1)(m-2)}{6} + \frac{(m+1)m(m-1)}{6} + \frac{(m+2)(m+1)m}{6}
\]
\[
= \frac{m(m-1)(m-2) + (m+1)m(m-1) + (m+2)(m+1)m}{6}
\]
\[
= \frac{(m^3 - 3m^2 + 2m) + (m^3 - m) + (m^3 + 3m^2 + 2m)}{6}
\]
\[
= \frac{3m^3 + 3m}{6}
\]
\[
= \frac{m^3 + m}{2}
\]
\[
= \frac{m(m^2 + 1)}{2}
\]
6. Prove the following identity by induction on \(n \geq 1 \) or by any other method.

\[
\sum_{i=1}^{n} (6i + 3) = 3n(n + 2)
\]

Proof by induction:

- **Notations.**

\[
L(n) = (6 \cdot 1 + 3) + (6 \cdot 2 + 3) + \cdots + (6n + 3) \\
R(n) = 3n(n + 2)
\]

- **Induction base.** Prove that \(L(1) = R(1) \):

\[
L(1) = 6 \cdot 1 + 3 = 9 \\
R(1) = 3 \cdot 1(1 + 2) = 9
\]

- **Induction hypothesis.** Assume that \(L(n - 1) = R(n - 1) \) for \(n > 1 \):

\[
L(n - 1) = (6 \cdot 1 + 3) + (6 \cdot 2 + 3) + \cdots + (6(n - 1) + 3) \\
R(n - 1) = 3(n - 1)((n - 1) + 2) \\
\quad = 3(n - 1)(n + 1) \\
\quad = 3(n^2 - 1) \\
\quad = 3n^2 - 3
\]

- **Inductive step.** Prove that \(L(n) = R(n) \) for \(n > 1 \):

\[
L(n) = (6 \cdot 1 + 3) + (6 \cdot 2 + 3) + \cdots + (6(n - 1) + 3) + (6n + 3) \quad \text{(* definition of } L(n) \text{ *)} \\
= L(n - 1) + (6n + 3) \quad \text{(* definition of } L(n - 1) \text{ *)} \\
= R(n - 1) + (6n + 3) \quad \text{(* induction hypothesis *)} \\
= (3n^2 - 3) + (6n + 3) \quad \text{(* evaluation of } R(n - 1) \text{ *)} \\
\quad = 3n^2 + 6n \quad \text{(* algebra *)} \\
\quad = 3n(n + 2) \quad \text{(* algebra *)} \\
\quad = R(n) \quad \text{(* definition of } R(n) \text{ *)}
\]
Second proof: Recall that

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

This identity implies the following,

\[
L(n) = \sum_{i=1}^{n} (6i + 3) \quad (* \text{definition of } L(n) *)
= \sum_{i=1}^{n} (6i) + \sum_{i=1}^{n} 3 \quad (* \text{algebra} *)
= 6 \sum_{i=1}^{n} i + 3n \quad (* \text{algebra} *)
= 6 \frac{n(n+1)}{2} + 3n \quad (* \text{applying above identity} *)
= 3n(n+1) + 3n \quad (* \text{algebra} *)
= 3n^2 + 3n + 3n \quad (* \text{algebra} *)
= 3n^2 + 6n \quad (* \text{algebra} *)
= 3n(n+2) \quad (* \text{algebra} *)
= R(n) \quad (* \text{definition of } R(n) *)
\]

Third proof: Recall that the sum of an arithmetic progression with \(n \) numbers is the sum of the first and the last numbers multiplied by \(n/2 \). The identity is about the sum of the following arithmetic progression with \(n \) numbers

\[9, 15, 21, \ldots, 6n + 3 \]

As a result the sum of this arithmetic progression is

\[
L(n) = 9 + 15 + 21 + \cdots + (6n + 3) \quad (* \text{definition of } L(n) *)
= \frac{n}{2} (9 + (6n + 3)) \quad (* \text{sum of arithmetic progression} *)
= \frac{n(6n + 12)}{2} \quad (* \text{algebra} *)
= \frac{6n(n + 2)}{2} \quad (* \text{algebra} *)
= 3n(n + 2) \quad (* \text{algebra} *)
= R(n) \quad (* \text{definition of } R(n) *)
\]
7. Prove the following identity by induction on $n \geq 1$ or by any other method.

$$\sum_{i=1}^{n} (i \cdot i!) = (n+1)! - 1$$

Proof by induction:

- **Notations.**

$$L(n) = 1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n!$$

$$R(n) = (n+1)! - 1$$

- **Induction base.** Prove that $L(1) = R(1)$:

$$L(1) = 1 \cdot 1! = 1$$

$$R(1) = (1+1)! - 1 = 2! - 1 = 1$$

- **Induction hypothesis.** Assume that $L(n-1) = R(n-1)$ for $n > 1$:

$$L(n-1) = 1 \cdot 1! + 2 \cdot 2! + \cdots + (n-1) \cdot (n-1)!$$

$$R(n-1) = ((n-1) + 1)! - 1$$

$$= n! - 1$$

- **Inductive step.** Prove that $L(n) = R(n)$ for $n > 1$:

$$L(n) = 1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n!$$

(* definition of $L(n)$ *)

$$= L(n-1) + n \cdot n!$$

(* definition of $L(n-1)$ *)

$$= R(n-1) + n \cdot n!$$

(* induction hypothesis *)

$$= (n! - 1) + n \cdot n!$$

(* evaluation of $R(n-1)$ *)

$$= (n \cdot n! + n!) - 1$$

(* algebra *)

$$= (n+1)n! - 1$$

(* algebra *)

$$= (n+1)! - 1$$

(* definition of factorial *)

$$= R(n)$$

(* definition of $R(n)$ *)
Second proof:

\[L(n) = \sum_{i=1}^{n} (i \cdot i!) \quad \text{(} \ast \text{ definition of } L(n) \ast) \]

\[= \sum_{i=1}^{n} (i \cdot i! + i! - i!) \quad \text{(} \ast \text{ algebra } \ast) \]

\[= \sum_{i=1}^{n} ((i + 1)i! - i!) \quad \text{(} \ast \text{ algebra } \ast) \]

\[= \sum_{i=1}^{n} ((i + 1)! - i!) \quad \text{(} \ast \text{ definition of factorial } \ast) \]

\[= (2! - 1!) + (3! - 2!) + \cdots + ((n + 1)! - n!) \quad \text{(} \ast \text{ expanding the summation } \ast) \]

\[= (n + 1)! - 1! \quad \text{(} \ast \text{ cancellations } \ast) \]

\[= (n + 1)! - 1 \quad \text{(} \ast 1! = 1 \ast) \]

\[= R(n) \quad \text{(} \ast \text{ definition of } R(n) \ast) \]