1. Identify the five components of the famous formula $e^{\pi i} - 1 = 0$
 (a) The additive identity:
 (b) The square root of -1:
 (c) The multiplicative identity:
 (d) The base of the natural logarithm:
 (e) The ratio of a circle’s circumference to its diameter:

2. Order the following six numbers in an increasing order: $e, \sqrt{2}, \phi, 1, \pi, 0$. By definition, ϕ is the golden ratio.
 _ < _ < _ < _ < _ < _

3. Let A be the set of all the prime numbers between 30 and 50. Let B be the set of all odd integers between 30 and 50 that are not of the form $3k + 1$ for some integer k. Find the following sets:
 (a) $A =$ ________________________________
 (b) $B =$ ________________________________
 (c) $A \cup B =$ ________________________________
 (d) $A \cap B =$ ________________________________
 (e) $A \setminus B =$ ________________________________
 (f) $B \setminus A =$ ________________________________

4. Find all possible True and False assignments for the 3 variables x, y, z (out of the possible 8 assignments) that satisfy the following formula:

 $(x \lor y) \land (\bar{y} \lor z) \land (\bar{x} \lor \bar{z})$

Recall that a boolean variable can be either True or False. The AND operation is denoted by \land, the OR operation is denoted by \lor, and \bar{v} is the negation of the variable v.

2
5. Expand the following expressions:

(a) \((x + y)^2 = \) __________________________

(b) \((x - y)^2 = \) __________________________

(c) \((x + y)^3 = \) __________________________

(d) \((x - y)^3 = \) __________________________

(e) \((x + y)^n = \) __________________________

(f) \((x - y)^n = \) __________________________

6. Factor the following expressions:

(a) \(x^2 - y^2 = \) __________________________

(b) \(x^3 - y^3 = \) __________________________

(c) \(x^3 + y^3 = \) __________________________

(d) For any \(n \geq 2\), \(x^n - y^n = \) __________________________

(e) For odd \(n \geq 3\), \(x^n + y^n = \) __________________________

7. (a) Simplify the following expressions:

i. \(x^n \times x^m = \) __________________________

ii. \(x^n \times y^n = \) __________________________

iii. \(\frac{\log_a(x^n)}{\log_a(x)} = \) __________________________

iv. \(2 \log_a(\sqrt{x}) = \) __________________________

(b) Answer the following questions:

i. If \(\log_a(y) = x\), then \(a^x = \) __________________________

ii. If \(\log_a(x) + \log_a(y) = \log_a(z)\), then \(z = \) __________________________

iii. If \(\log_a(x) - \log_a(y) = \log_a(z)\), then \(z = \) __________________________

8. (a) Simplify the following expressions:

i. \(\frac{(n+1)!}{(n-1)!} = \) __________________________

ii. \(\left\lfloor \frac{n}{k} \right\rfloor \times k + (n \mod k) = \) __________________________

(b) Answer the following questions:

i. If \(x > 0\), then \(|x| + |-x| = \) __________________________

ii. If \(x < 0\), then \(|x| + |-x| = \) __________________________
9. Let $0 \leq x \leq 1$ be a real number and let $f(x) = \lfloor x \rfloor + \lceil x \rceil$. For which values of x, $f(x) < 1$, $f(x) = 1$, and $f(x) > 1$?

Recall that for a real number x, the largest integer that is smaller or equal to x is denoted by $\lfloor x \rfloor$ and the smallest integer that is greater or equal to x is denoted by $\lceil x \rceil$.

10. Solve the following two linear equations. Find the values of x and y as a function of the three constants a, b, c.

$$x + y = a$$
$$bx + cy = 0$$

11. What are the roots of the quadratic equation $x^2 + bx = c$?

12. Let $x = 210$ and $y = 225$.

(a) What is the Greatest Common Divisor (GCD) of x and y?
(b) What is the Least Common Multiplier (LCM) of x and y?
13. Answer the following two questions:

(a) Let T be a right-angled triangle with sides a, b, and c where c is the hypotenuse (the side opposite the right angle). Write c as a function of a and b.

(b) Let T be a triangle in which one of its side is of length b. Let h be the length of the height that is perpendicular to the side b. What is the area of the triangle T?

14. What is the sum of the degrees of all the inner angles of the following geometric shapes?

(a) Triangle:

(b) Square:

(c) Pentagon:

(d) Hexagon:

(e) n-gon:

15. Let C be a circle whose radius is r and whose diameter is d.

(a) What is the circumference of C as a function of r?

(b) What is the circumference of C as a function of d?

(c) What is the area of C as a function of r?

(d) What is the area of C as a function of d?

16. When a fair coin is flipped, then both the probabilities of Head (H) and Tail (T) are 1/2. Four coins are flipped. What is the probability that

(a) all are H or all are T:

(b) there is exactly one H:

17. Find the sum of the following sequences as a function of n:

(a) $1 + 2 + 3 + \cdots + n =$

(b) $1 + 2 + 4 + 8 + \cdots + 2^n =$

(c) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^n} =$

18. Order the following functions from the slowest to the fastest when n tends to infinity:

$n! ; n^2 ; \log(n) ; n ; 1 ; 2^n ; n^n ; \log \log(n)$
19. Solve the following recursive formulas for $T(n)$. Express $T(n)$ as a function of n.

(a) $n \geq 1$ is an integer.

 \[
 T(1) = 1 \\
 T(n) = T(n - 1) + 1
 \]

(b) $n \geq 1$ is an integer.

 \[
 T(1) = 1 \\
 T(n) = T(n - 1) + n
 \]

(c) $n \geq 0$ is an integer.

 \[
 T(0) = 1 \\
 T(n) = 2T(n - 1)
 \]

(d) $n \geq 1$ is a power of 2 integer.

 \[
 T(1) = 0 \\
 T(n) = T(n/2) + 1
 \]
What is the value of c when each procedure terminates?

(a) $f(n)$ (* $n \geq 1$ is an integer *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad \quad c := c + 1
\]

(b) $f(n)$ (* $n \geq 1$ is an integer *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = i \text{ to } n \text{ do} \\
\quad \quad c := c + 1
\]

(c) $f(n)$ (* $n \geq 1$ is an integer *)
\[
c = 1 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad c := c \times 2
\]

(d) $f(n)$ (* $n \geq 1$ is a power of 2 integer *)
\[
c = 0 \\
\text{while } n > 1 \text{ do} \\
\quad n := n/2 \\
\quad c := c + 1
\]