Discrete Math

Quiz: Prerequisite

Name: ..
Id: ...

<table>
<thead>
<tr>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
1. Identify the five components of the famous formula $e^{\pi i} - 1 = 0$

(a) The additive identity: _____
(b) The square root of -1: _____
(c) The multiplicative identity: _____
(d) The base of the natural logarithm: _____
(e) The ratio of a circle’s circumference to its diameter: _____

2. Order the 5 numbers $\sqrt{2}, \pi, 0, e, 1$ in an increasing order:

___ < ___ < ___ < ___ < ___

3. Let \(A \) be the set of all the prime numbers greater than 10 and smaller than 32. Let \(B \) be the set of all integers greater than 10 and smaller than 32 that are of the form $4k - 1$ for some integer k. Find the following sets:

(a) \(A = \) ________________________________
(b) \(B = \) ________________________________
(c) \(A \cup B = \) ________________________________
(d) \(A \cap B = \) ________________________________

4. Working with formulas and expressions.

(a) Expand the expression \((x - y)^2 = \) ________________________________
(b) Factor the expression \(y^2 - x^2 = \) ________________________________
(c) Simplify the expression \(x^k \times x^h = \) ________________________________
(d) Answer the question: If \(\log_a(y) = x \), then \(a^x = \) ________________________________
(e) Simplify the expression \(\frac{n!}{(n-1)!} = \) ________________________________

5. Let \(x = 15 \) and \(y = 10 \).

(a) What is the Greatest Common Divisor (GCD) of \(x \) and \(y \)? ________
(b) What is the Least Common Multiplier (LCM) of \(x \) and \(y \)? ________

6. When a fair coin is flipped, then both the probabilities of Head (H) and Tail (T) are 1/2. Three coins are flipped. What is the probability \(P \) that exactly one of them is \(H \)? \(P = \) ________________
(a) Let T be a right-angled triangle with sides a, b, and c where c is the hypotenuse (the side opposite the right angle).
Write a as a function of b and c: __________________________
(b) What is the sum of the degrees of all the four inner angles of any rectangle? ________________________________
(c) What is the area of a circle C as a function of its radius r? $C =$ __________

8. Find the values of x and y in the linear equations:

\[
\begin{align*}
 x - y &= 2 \\
 2x + 3y &= 19
\end{align*}
\]

$x =$ _____
y =$ _____

9. Find the sum S of the sequence $1 + 2 + 4 + 8 + \cdots + 2^n$ as a function of n.
$S =$ _______________________

10. Order the four functions 2^n, $\log(n)$, n, and n^2 by their growth from the slowest to the fastest when n tends to infinity:

_____ $<$ _____ $<$ _____ $<$ _____

11. Express the following recursive formula as a function of an integer $n \geq 1$:
$T(n) =$ __________________________

$T(1) = 1$
$T(n) = T(n - 1) + 1$

12. What is the value of c when each procedure terminates? $c =$ ________

\[
f(n) \quad (\ast \ n > 0 \ \text{is an integer number} \ \ast) \\
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do}
\quad \text{for } j = 1 \text{ to } n \text{ do}
\qquad c := c + 1
\]