1. For \(n \geq 1 \), let \(L = (\ell_1, \ell_2 \ldots \ell_n) \) be a list with repetitions of length \(n \). For \(1 \leq i \leq j \leq n \), the sub-list \(L(i, j) \) of \(L \) is the list \((\ell_i, \ell_{i+1}, \ldots, \ell_j)\). The sub-list \(L(i, j) \) is a prefix-list of \(L \) if \(i = 1 \) and it is a suffix-list of \(L \) if \(j = n \).

Example: Consider the list \(L = (A, B, A, C, D, D, A) \) of length \(n = 7 \). One of its sub-lists is \(L(2, 4) = (B, A, C) \) and another one is \(L(3, 6) = (A, C, D, D) \). The sub-lists \(L(1, 2) = (A, B) \) and \(L(1, 1) = (A) \) are two of the prefix-lists of \(L \) and the sub-lists \(L(5, 7) = (D, D, A) \) and \(L(7, 7) = (A) \) are two of the suffix-lists of \(L \). The sub-list \(L(1, 7) \) (which is \(L \) itself) is both a prefix-list and a suffix-list of \(L \).

(a) For \(n \geq 1 \), how many prefix-lists of \(L \) are there as a function of \(n \)?

Answer: \(n \)

Proof: The \(n \) prefix-lists of \(L \) are \(L(1, 1), L(1, 2), \ldots, L(1, n) \).

(b) For \(n \geq 1 \), how many suffix-lists of \(L \) are there as a function of \(n \)?

Answer: \(n \)

Proof: The \(n \) suffix-lists of \(L \) are \(L(1, n), L(2, n), \ldots, L(n, n) \).

(c) For \(n \geq 1 \), how many sub-lists of \(L \) are there as a function of \(n \)?

Answer: \(\frac{n(n+1)}{2} \)

Proof I:
- \(L(1, 1) \) is the only sub-list that ends with the index 1.
- \(L(1, 2) \) and \(L(2, 2) \) are the only two sub-lists that end with the index 2.
- In general, for \(1 \leq i \leq n \), there are only \(i \) sub-lists that end with the index \(i \):
 \[L(1, i), L(2, i), \ldots, L(i, i) \]
- In particular, there are \(n \) sub-lists (the \(n \) suffix-lists) that ends with the index \(n \):
 \[L(1, n), L(2, n), \ldots, L(n, n) \]
- Since a sub-list must end with an index \(i \) for some \(1 \leq u \leq n \), it follows that in total the number of sub-lists is
 \[1 + 2 + \cdots + n = \frac{n(n+1)}{2} \]

Proof II: Each choice of two indices \(1 \leq i < j \leq n \) corresponds to a sub-list of \(L \) of length at least two. There are \(\binom{n}{2} \) such choices. In addition, \(L(1, 1), L(2, 2), \ldots, L(n, n) \) are the \(n \) sub-lists of size 1. In total the number of sub-lists is

\[
\binom{n}{2} + n = \frac{n(n-1)}{2} + n = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{(n+1)n}{2} = \binom{n+1}{2}
\]
2. For a positive integer $n \geq 3$, simplify the following expression:

$$n \binom{n}{2} - 3 \binom{n}{3}$$

The goal is to “get rid” of the two binomial coefficients and replace the above expression with one simple term which is a function of n.

Answer: $n(n - 1)$.

Proof:

$$n \cdot \binom{n}{2} - 3 \cdot \binom{n}{3} = n \cdot \frac{n(n - 1)}{2} - 3 \cdot \frac{n(n - 1)(n - 2)}{6}$$

$$= \frac{n(n - 1)n}{2} - \frac{n(n - 1)(n - 2)}{2}$$

$$= \frac{n(n - 1)(n - (n - 2))}{2}$$

$$= \frac{n(n - 1) \cdot 2}{2}$$

$$= n(n - 1)$$
3. Prove by induction that $7^n - 1$ is divisible by 6 for all integers $n \geq 1$.

Proof by induction:

- **Induction base.** $7^1 - 1 = 6 = 6 \cdot 1$ for $n = 1$.
- **Induction hypothesis.** Assume that $7^k - 1 = 6 \cdot q$ for $k \geq 1$ and an integer q.
- **Inductive step.** Prove that $7^{k+1} - 1 = 6 \cdot p$ for $n > 1$ and an integer p.

\[
7^{k+1} - 1 = 7 \cdot 7^k - 1 = 6 \cdot 7^k + (7^k - 1) = 6 \cdot 7^k + 6 \cdot q = 6(7^k + q)
\]

Hence, $7^{k+1} = 6 \cdot p$ for integer $p = 7^n - 1 + q$ and is therefore divisible by 6.

Another proof: The following is an identity for any positive real numbers $x \geq y$ and an integer $n \geq 1$,

\[x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + xy^{n-3} + y^{n-2} + y^{n-1})\]

For $x = 7$ and $y = 1$ the above identity is equivalent to the following identity,

\[
7^n - 1 = 7^n - 1^n = (7 - 1)(7^{n-1} + 7^{n-2} \cdot 1 + 7^{n-3} \cdot 1^2 + \cdots + 7 \cdot 1^{n-3} + 1^{n-2} + 1^{n-1}) = (7 - 1)(7^{n-1} + 7^{n-2} + 7^{n-3} + \cdots + 49 + 7 + 1) = 6(7^{n-1} + 7^{n-2} + \cdots + 7 + 1)
\]

This implies that $7^n - 1$ is divisible by 6.
4. For each one of the following three closed-form expressions, define a recursive formula with an initial value such that the solution to the recursive formula is the closed-form expression. That is, for each expression, define $T(n)$ as a function of $T(n-1)$ and define $T(1)$.

(a) $T(n) = 2n$ for an integer $n \geq 1$.

Answer:

$$T(n) = \begin{cases}
2 & \text{for } n = 1 \\
T(n-1) + 2 & \text{for } n > 1
\end{cases}$$

Proof by induction $T(n) = 2n$ for $n \geq 1$:

- Induction base. $T(1) = 2 \cdot 1 = 2$ for $n = 1$.
- Induction hypothesis. Assume that $T(n-1) = 2(n-1)$ for $n > 1$.
- Inductive step. Prove that $T(n) = 2n$ for $n > 1$:

$$T(n) = T(n-1) + 2 = 2(n-1) + 2 = 2n - 2 + 2 = 2n$$

(b) $T(n) = 2^n$ for an integer $n > 1$.

Answer:

$$T(n) = \begin{cases}
2 & \text{for } n = 1 \\
2T(n-1) & \text{for } n > 1
\end{cases}$$

Proof by induction that $T(n) = 2^n$ for $n \geq 1$:

- Induction base. $T(1) = 2^1 = 2$ for $n = 1$.
- Induction hypothesis. Assume that $T(n-1) = 2^{n-1}$ for $n > 1$.
- Inductive step. Prove that $T(n) = 2^n$ for $n > 1$:

$$T(n) = 2T(n-1) = 2 \cdot 2^{n-1} = 2^n$$

(c) $T(n) = n!$ for an integer $n \geq 1$.

Answer:

$$T(n) = \begin{cases}
1 & \text{for } n = 1 \\
nT(n-1) & \text{for } n > 1
\end{cases}$$

Proof by induction that $T(n) = n!$ for $n \geq 1$:

- Induction base. $T(1) = 1! = 1$ for $n = 1$.
- Induction hypothesis. Assume that $T(n-1) = (n-1)!$ for $n > 1$.
- Inductive step. Prove that $T(n) = n!$ for $n > 1$:

$$T(n) = nT(n-1) = n \cdot (n-1)! = n!$$
5. Solve the following recursive formula and prove that your solution is correct.

\[T(n) = \begin{cases}
1 & \text{for } n = 0 \\
2T(n - 1) + 1 & \text{for } n \geq 1
\end{cases} \]

Small values of \(n \):

- \(n = 0 \): \(T(0) = 1 = 2^1 - 1 \).
- \(n = 1 \): \(T(1) = 2T(0) + 1 = 2 \cdot 1 + 1 = 3 = 2^2 - 1 \).
- \(n = 2 \): \(T(2) = 2T(1) + 1 = 2 \cdot 3 + 1 = 7 = 2^3 - 1 \).
- \(n = 3 \): \(T(3) = 2T(2) + 1 = 2 \cdot 7 + 1 = 15 = 2^4 - 1 \).
- \(n = 4 \): \(T(4) = 2T(3) + 1 = 2 \cdot 15 + 1 = 31 = 2^5 - 1 \).

Answer: \(T(n) = 2^{n+1} - 1 \).

Proof by induction:

- **Induction base.** \(T(0) = 2^{0+1} - 1 = 1 \) for \(n = 0 \).
- **Induction hypothesis.** Assume that \(T(n - 1) = 2^n - 1 \) for \(n > 0 \).
- **Inductive step.** Prove that \(T(n) = 2^{n+1} - 1 \) for \(n > 0 \):
 \[
 T(n) = 2T(n - 1) + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 2 + 1 = 2^{n+1} - 1
 \]