Discrete Structures: Algorithms

Amotz Bar-Noy

Department of Computer and Information Science
Brooklyn College
Algorithm: Definitions

- A finite set of precise instructions for performing a computation or for solving a problem.
- A specific set of instructions for carrying out a procedure or solving a problem, usually with the requirement that the procedure terminates at some point.
- A procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation.
- A step-by-step procedure for solving a problem or accomplishing some end especially by a computer.
- A logical arithmetical or computational procedure that if correctly applied ensures the solution of a problem.
- A finite set of unambiguous instructions performed in a prescribed sequence to achieve a goal, especially a mathematical rule or procedure used to compute a desired result.
A word used by programmers when they do not want to explain what they did.

A word used by those whose program failed to justify what they did.
Algorithm

Synonym
- Method, Procedure, Program, Process, Recipe, Routine, Solution, Technique, Mechanism, Scheme, Way, Design, Plan, Strategy, Construction, ...

Etymology
- Alteration of Middle English algorisme;
- from Old French & Medieval Latin algorismus;
- from Arabic al-khuwarizmi;
- from the name of the 9th-century Persian Mathematician Al-Khowârizmi who was the first (?) to formalize the rules for the four basic arithmetic operations.
The Ultimate Algorithmic Problem!?

Question
- What do we need to solve problems?

Attributes
1. Talent?
2. Intuition?
3. Luck?
4. Experience?
5. Hard work?

Answer
- Apply some combination of these five attributes!!!
Some Heuristics to Solve Problems

1. Search for a pattern
2. Draw a figure
3. Formulate an equivalent problem
4. Modify the problem
5. Choose effective notation
6. Exploit symmetry
7. Divide into cases
8. Work backward
9. Argue by contradiction
10. Pursue parity
11. Consider extreme cases
12. Generalize
Algorithms: Online Videos

What is an algorithm?
- https://www.youtube.com/watch?v=Da5TOXCwLSg
- https://www.youtube.com/watch?v=6hfOvs8pY1k
- https://www.youtube.com/watch?v=CvSOaYi89B4&feature=youtu.be

Why algorithms are called algorithms?
- https://www.youtube.com/watch?v=oRkNaF0QvnI
Three Ancient Algorithms

The Babylonian Multiplication Algorithm
- Introduced around 3700 years ago

The Euclid’s Greatest Common Divisor Algorithm
- Introduced around 2300 years ago

The Sieve of Eratosthenes to Find Prime Numbers Algorithm
- Introduced around 2200 years ago
The Babylonian Multiplication Algorithm

Although there are some evidences of early multiplication algorithms in Egypt (around 1700-2000 BC) the oldest algorithm is widely accepted to have been found on a set of Babylonian clay tablets that date to around 1600-1800 BC.

Their true significance only came to light in 1972 when computer scientist & mathematician Donald E. Knuth published the first English translations of various Cuneiform mathematical tablets.

The Babylonians had developed a nice way to explain an algorithm by examples as the algorithm itself was being defined.

The tablets also appear to have been an early form of instruction manual.
The Euclidian algorithm is a procedure used to find the greatest common divisors (GCD) of two positive integers.

It was first described by Euclid in his manuscript the Elements written around 300 BC.

It is a very efficient computation that is still used today by computers in some form or other.
The Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

It is attributed to the Greek mathematician Eratosthenes of Cyrene and was “invented” around 200 BC.

The algorithm iteratively marks as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2.

The “less efficient” method sequentially tests each candidate number for divisibility by previously found prime.
Algorithms — Properties

Correctness
- For all valid inputs

Termination
- Does not run forever on some inputs

Complexity – Efficiency
- As a function of the input size
- Worst-Case and/or Average-Case

Scalability
- “Similar” structure and efficiency for any input size

Limitations
- For the algorithm and for the problem

Optimality
- Optimal or near-optimal or approximately optimal solutions
Cost and Complexity

Cost
- How much resources does the algorithm require?
 - Usually time and space (memory)

Complexity
- As a function of the input size
 - Usually an integer $n > 0$
 - Usually a monotonic non-decreasing function

Terminology
- Complexity is often called **running-time** because time is the dominating cost
Worst Case and Average Case Complexity

Worst case

- \(T(n) \) is a **worst case complexity**:
 - If among all inputs of size \(n \) the worst case complexity is \(T(n) \)

Average case

- \(T(n) \) is an **average case complexity**:
 - If the **average** complexity over all length \(n \) inputs is \(T(n) \)
 - Averaging based on some distribution of the inputs (usually the uniform distribution)
Bounds

Upper Bound
- A function $f(n)$ such that $T(n) \leq f(n)$ for all n

Lower bound
- A function $g(n)$ such that $T(n) \geq g(n)$ for all n

Tight bound
- A function $h(n)$ such that $T(n) \approx h(n)$ for all n
Performance Evaluation of Algorithms

Theoretical analysis
- All possible inputs
- Independent of hardware/software implementation
- Based on a high level language

Experimental Study
- Some typical input
- Depends on hardware/software implementation
- Based on a real program
Growth of Functions

Objective
- Develop a language to express that Algorithm A is better than or worse than or equivalent to Algorithm B

Technique
- Define a “≤” relation between functions measuring the growth of functions

Robustness
- Being independent of the hardware/software environment: Turing machines, classroom models, today computers, and super-computers

An important property
- Constants that can be affected by changing the environment should be ignored
Examples of Function Growth

<table>
<thead>
<tr>
<th>Function</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400n$</td>
<td>2,500</td>
<td>150,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>707</td>
<td>5,477</td>
<td>42,426</td>
</tr>
<tr>
<td>n^4</td>
<td>31</td>
<td>88</td>
<td>244</td>
</tr>
<tr>
<td>2^n</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
</tbody>
</table>

Maximum size of a problem that can be solved in one second, one minute, and one hour, for various running times measured in microseconds.
Examples of Function Growth

<table>
<thead>
<tr>
<th>Running Time</th>
<th>New Maximum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400n$</td>
<td>$256m$</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>$16m$</td>
</tr>
<tr>
<td>n^4</td>
<td>$4m$</td>
</tr>
<tr>
<td>2^n</td>
<td>$m + 8$</td>
</tr>
</tbody>
</table>

- Increase in the maximum size of a problem that can be solved with a certain complexity, by using a computer that is **256 times faster** than the previous one.
- Each entry is given as a function of m, the previous maximum problem size.
The “O, Ω, Θ, o, ω” Notation

Big-Oh

$f(n) = O(g(n))$ if $f(n)$ asymptotically less than or equal to $g(n)$

Big-Omega

$f(n) = \Omega(g(n))$ if $f(n)$ asymptotically greater than or equal to $g(n)$

Big-Theta

$f(n) = \Theta(g(n))$ if $f(n)$ asymptotically equal to $g(n)$

Little-oh

$f(n) = o(g(n))$ if $f(n)$ asymptotically strictly less than $g(n)$

Little-omega

$f(n) = \omega(g(n))$ if $f(n)$ asymptotically strictly greater than $g(n)$
Big-Oh, Big-Omega, and Big-Theta

\[f(n) = O(g(n)) \]
- **There exist** a real constant \(c > 0 \) and an integer constant \(n_0 > 0 \) such that \(f(n) \leq cg(n) \) for every integer \(n \geq n_0 \)

\[f(n) = \Omega(g(n)) \]
- **There exist** a real constant \(c > 0 \) and an integer constant \(n_0 > 0 \) such that \(f(n) \geq cg(n) \) for every integer \(n \geq n_0 \)

\[f(n) = \Theta(g(n)) \]
- **There exist** two real constants \(c', c'' > 0 \) and an integer constant \(n_0 > 0 \) such that \(c''g(n) \leq f(n) \leq c'g(n) \) for every integer \(n \geq n_0 \)
Big-Oh and Big-Omega

<table>
<thead>
<tr>
<th></th>
<th>$f(n) = O(g(n))$</th>
<th>$g(n) = O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows faster</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>$f(n)$ grows faster</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>same growth</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$f(n) = \Omega(g(n))$</th>
<th>$g(n) = \Omega(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows faster</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>$f(n)$ grows faster</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>same growth</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Assume $f(n) = O(g(n))$

- By the definition of O, there exist $c > 0$ and $n_0 > 0$ such that $f(n) \leq cg(n)$ for every $n \geq n_0$
- It follows that $g(n) \geq (1/c)f(n)$ for every $n \geq n_0$
- Since $1/c > 0$, by the definition of Ω, $g(n) = \Omega(f(n))$

Assume $g(n) = \Omega(f(n))$

- By the definition of Ω, there exist $c > 0$ and $n_0 > 0$ such that $g(n) \geq cf(n)$ for every $n \geq n_0$
- It follows that $f(n) \leq (1/c)g(n)$ for every $n \geq n_0$
- Since $1/c > 0$, by the definition of O, $f(n) = O(g(n))$
\(f(n) = \Theta(g(n)) \iff (f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))) \)

Assume \(f(n) = \Theta(g(n)) \)

- By the definition of \(\Theta \), there exist \(c', c'' > 0 \) and \(n_0 > 0 \) such that
 \[c''g(n) \leq f(n) \leq c'g(n) \]
 for every \(n \geq n_0 \)
- By the definition of \(O \), \(f(n) = O(g(n)) \) for \(c = c' \) and \(n_0 \)
- By the definition of \(\Omega \), \(f(n) = \Omega(g(n)) \) for \(c = c'' \) and \(n_0 \)

Assume \(f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \)

- By the definition of \(O \), there exist \(c_1 > 0 \) and \(n_1 > 0 \) such that
 \[f(n) \leq c_1 g(n) \]
 for every \(n \geq n_1 \)
- By the definition of \(\Omega \), there exist \(c_2 > 0 \) and \(n_2 > 0 \) such that
 \[f(n) \geq c_2 g(n) \]
 for every integer \(n \geq n_2 \)
- Therefore, for \(n_0 \geq \max\{n_1, n_2\} \), it follows that
 \[c_2 g(n) \leq f(n) \leq c_1 g(n) \]
 for every \(n \geq n_0 \)
- By the definition of \(\Theta \), \(f(n) = \Theta(g(n)) \) for \(c' = c_1 \), \(c'' = c_2 \), and \(n_0 \)
Θ as an equivalence relation

- **Reflexive:** \(f(n) = \Theta(f(n)) \)
- **Symmetric:** \((f(n) = \Theta(g(n))) \iff (g(n) = \Theta(f(n))) \)
- **Transitive:** \(f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \Rightarrow (f(n) = \Theta(h(n))) \)

O, Ω, are reflexive relations

- \(f(n) = O(f(n)) \)
- \(f(n) = \Omega(f(n)) \)

O, Ω, are not symmetric relations

- \(f(n) = O(g(n)) \) does not imply that \(g(n) = O(f(n)) \)
- \(f(n) = \Omega(g(n)) \) does not imply that \(g(n) = \Omega(f(n)) \)

O, Ω, are transitive relations

- \(f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n)) \)
- \(f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n)) \)
\(n^2 \) vs. \(n \)

\(n = O(n^2) \) and \(n^2 = \Omega(n) \)

- Observe that \(n \leq n^2 \) for integer \(n \geq 1 \) (\(n < n^2 \) for integer \(n > 1 \))
- Therefore, for \(c = 1 \) and \(n_0 = 1 \), the definition of \(O \) implies that \(n = O(n^2) \) and the definition of \(\Omega \) implies that \(n^2 = \Omega(n) \)

\(n^2 \neq O(n) \) and \(n \neq \Omega(n^2) \)

- Observe that if \((1/c) < n \) for a constant \(c > 0 \), then by multiplying both sides of the inequality by \(cn \), it follows that \(n < cn^2 \)
- Therefore, \(n < cn^2 \) for every real constant \(c > 0 \) and integer \(n \geq n_1 > (1/c) \)
- As a result, there are no real constant \(c > 0 \) and integer \(n_0 \) such that \(n \geq cn^2 \) for every integer \(n \geq n_0 \)
- Consequently, the definitions of \(O \) and \(\Omega \) cannot be applied to get \(n^2 = O(n) \) or \(n = \Omega(n^2) \)
Examples

“Ignore” constants

- $3n = \Theta(n/2)$
- $1000000n = \Theta(n/100000)$
- $n\log_2 n/100000 = \Omega(100000000n)$
- $\log_2(n) = \Theta(\log_{10}(n))$

Polynomials

- $a_d n^d + a_{d-1} n^{d-1} + \cdots + a_1 n + a_0 = \Theta(n^d)$
 * for constants a_0, a_1, \ldots, a_d and $a_d > 0$
- **Example:** $5n^3 + 1000n^2 - 345n + 7 = \Theta(n^3)$
Observations

Eliminating constants

For any real constant c and $\Psi \in \{O, \Omega, \Theta\}$:

- $\Psi(cf(n)) = \Psi(f(n))$
- $\Psi(f(n)/c) = \Psi(f(n))$
- $\Psi(c) = \Psi(1)$

Addition, multiplication, and max rules

For $\Psi \in \{O, \Omega, \Theta\}$:

- $\Psi(f(n)) + \Psi(g(n)) = \Psi(f(n) + g(n))$
- $\Psi(f(n)) \cdot \Psi(g(n)) = \Psi(f(n) \cdot g(n))$
- $\Psi(f(n)) \cdot \Psi(g(n)) = \Psi(\max\{f(n), g(n)\})$
Little-oh and Little-omega

\[f(n) = o(g(n)) \]

- If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \):
 - *For any* constant \(c > 0 \) *there exists* an integer constant \(n_0 > 0 \) such that \(f(n) \leq cg(n) \) *for every* integer \(n \geq n_0 \)

\[f(n) = \omega(g(n)) \]

- If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \):
 - *For any* constant \(c > 0 \) *there exists* an integer constant \(n_0 > 0 \) such that \(f(n) \geq cg(n) \) *for every* integer \(n \geq n_0 \)
Propositions

\(o \) and \(\omega \)

- \(f(n) = o(g(n)) \iff g(n) = \omega(f(n)) \)
- \(f(n) = o(g(n)) \land g(n) = o(h(n)) \Rightarrow f(n) = o(h(n)) \)
- \(f(n) = \omega(g(n)) \land g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n)) \)

\(o \) vs. \(O \)

- \(f(n) = o(g(n)) \Rightarrow f(n) = O(g(n)) \)
- \(f(n) = O(g(n)) \not\Rightarrow f(n) = o(g(n)) \)

\(\omega \) vs \(\Omega \)

- \(f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n)) \)
- \(f(n) = \Omega(g(n)) \not\Rightarrow f(n) = \omega(g(n)) \)
Examples

Polynomials

- \(n^3 = \omega(n^2) \)
- \(10^{100} n = o(n^2/10^{100}) \)
- \(1 + n + n^2 + n^3 + \cdots + n^{k-1} = o(n^k) \)

The logarithmic function

- \(\log_2 n = o(n) \)
- \(n \log_2 n = \omega(n) \)
More Examples

The \(\sqrt{\text{sqrt function}} \)
- \(\log_2 n = o(\sqrt{n}) \)
- \(n = \omega(\sqrt{n}) \)

Beyond polynomial function
- \(n^k = o(2^n) \) for any integer \(k \geq 0 \)
- \(2^n = o(3^n) = o(4^n) = \cdots = o(k^n) \)
- \(n^n = \omega(n!) = \omega(2^n) \)
Hierarchy of Functions

<table>
<thead>
<tr>
<th>Function Type</th>
<th>Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1</td>
</tr>
<tr>
<td>Log Star</td>
<td>(\log^* n)</td>
</tr>
<tr>
<td>Loglog</td>
<td>(\log \log n)</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>(\log n)</td>
</tr>
<tr>
<td>Poly-logarithmic</td>
<td>(\log^k n)</td>
</tr>
<tr>
<td>Sub-linear</td>
<td>(n^\varepsilon)</td>
</tr>
<tr>
<td>Linear</td>
<td>(n)</td>
</tr>
<tr>
<td>Above-linear</td>
<td>(n \log n)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>(n^2)</td>
</tr>
<tr>
<td>Cubic</td>
<td>(n^3)</td>
</tr>
<tr>
<td>Polynomial</td>
<td>(n^k)</td>
</tr>
<tr>
<td>Super-polynomial</td>
<td>(n^{\log n})</td>
</tr>
<tr>
<td>Exponential</td>
<td>(2^n)</td>
</tr>
<tr>
<td>Factorial</td>
<td>(n!)</td>
</tr>
<tr>
<td>Super-exponential</td>
<td>(n^n)</td>
</tr>
<tr>
<td>Exponential Tower</td>
<td>(2^{2^{\ldots^2}})</td>
</tr>
</tbody>
</table>

Amotz Bar-Noy (Brooklyn College)
The Prefix-Sum Problem

Input
- An array $A = [A[1], A[2], \ldots, A[n]]$ with $n \geq 1$ real numbers

Output
- An array $S = [S[1], S[2], \ldots, S[n]]$ such that for all $1 \leq i \leq n$,
 \[
 S[i] = \sum_{j=1}^{i} A[j]
 \]

Example
- $A = [13, 34, -8, -55, -5, 21, \ldots]$
- $S = [13, 47, 39, -16, -21, 0 \ldots]$

Optimization goal
- Minimize the number of additions between the array numbers
A By Definition Algorithm

Algorithm

prefix-sum\((A)\)
 for \(i = 1\) to \(n\) do
 \(S[i] := 0\)
 for \(i = 1\) to \(n\) do
 for \(j = 1\) to \(i\) do

Correctness
 By definition

Complexity
 \[1 + 2 + \cdots + n = \frac{n(n+1)}{2}\] additions in the inner loop
 \(\Theta(n^2)\) complexity
The Prefix-Sum Problem

A By Induction Algorithm

Algorithm

\(\text{prefix-sum}(A) \)

\[
\]

for \(i = 2 \) to \(n \) do

\[
S[i] := S[i - 1] + A[i]
\]

Correctness

- Induction hypothesis, for \(1 \leq i \leq n - 1 \), after iteration \(i - 1 \):
 \[
 S[i - 1] = \sum_{j=1}^{i-1} A[j]
 \]
- By Induction for \(2 \leq i \leq n \), after iteration \(i \):
 \[
 S[i] = S[i - 1] + A[i] = \sum_{j=1}^{i-1} A[j] + A[i] = \sum_{j=1}^{i} A[j]
 \]
A By Induction Algorithm

Algorithm

prefix-sum(A)

for \(i = 2 \) to \(n \) do

Complexity

- \(n - 1 \) additions in the loop
- \(\Theta(n) \) complexity
Evaluating a Polynomial

Input
- Real numbers c and a_0, a_1, \ldots, a_n such that $a_n \neq 0$

Output
- The value of the polynomial $P(x)$ for $x = c$:
 \[P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \]

Example
- $a_4 = 5$, $a_3 = 0$, $a_2 = -7$, $a_1 = 3$, $a_0 = -11$, and $c = 2$
- $P(x) = 5x^4 - 7x^2 + 3x - 11$
- $P(2) = 5 \cdot 2^4 - 7 \cdot 2^2 + 3 \cdot 2 - 11 = 47$

Optimization goal
- Minimize the number of operations between real numbers
 - multiplications and additions and subtractions
A By Definition Algorithm

Algorithm

Polynomial-Evaluation\((P(x), c)\)

\[P(c) = a_0 \]

for \(i = 1 \) to \(n \) do

\[a = a_i \]

for \(j = 1 \) to \(i \) do

\[a = a \cdot c \quad \text{(* } a = a_i c^i \text{ *)} \]

\[P(c) = P(c) + a \quad \text{(* } P(c) = a_i c^i + a_{i-1} c^{i-1} + \cdots + a_1 c + a_0 \text{ *)} \]

return\((P(c))\) \(\text{(* } P(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_1 c + a_0 \text{ *)}\)

Correctness

- By definition
A By Definition Algorithm

Complexity

- i multiplications in the i^{th} iteration of the inner loop
- $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ multiplications overall
- n additions in the outer loop

Total number of operations:

$$\frac{n(n+1)}{2} + n = \frac{n^2 + n}{2} + \frac{2n}{2} = \frac{n^2 + 3n}{2} = \frac{1}{2} n^2 + \frac{3}{2} n$$

$\Theta(n^2)$ overall complexity.
A Prefix-Sum Algorithm

Idea

- Compute c, c^2, c^3, \ldots, c^n all the powers of c using the efficient prefix-sum method

Algorithm

Polynomial-Evaluation($P(x), c$)

$$P(c) = a_0$$

$$cc = 1$$

for $i = 1$ to n do

$$cc = cc \cdot c$$ (* $cc = c^i$ *)

$$P(c) = P(c) + a_i \cdot cc$$ (* $P(c) = a_i c^i + a_{i-1} c^{i-1} + \cdots + a_1 c + a_0$ *)

return($P(c)$) (* $P(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_1 c + a_0$ *)

Correctness

- By induction
A Prefix-Sum Algorithm

Complexity

- 2 multiplications in the i^{th} iteration of the loop
- 1 addition in the i^{th} iteration of the loop
- Total of $3n$ operations: $2n$ multiplications and n additions
- $\Theta(n)$ overall complexity
The Horner’s Algorithm

Idea

\[P(x) = \cdots (((a_n x + a_{n-1}) x + a_{n-2}) x + \cdots) x + a_0 \]

Example I

\[4x^3 + 3x^2 + 2x + 1 = (((4x + 3)x + 2)x + 1 \]

Example II

\[5x^4 - 7x^2 + 3x - 11 = (((5x + 0)x - 7)x + 3)x - 11 \]
The Horner’s Algorithm

Algorithm

Polynomial-Evaluation \((P(x), c)\)

\[P(c) = a_n \]

for \(i = n - 1 \) downto 0 do

\[P(c) = P(c) \cdot c + a_i \]

(* \(P(c) = a_n c^{n-i} + a_{n-1} c^{n-i-1} + \cdots + a_{i+1} c + a_i \) *)

return \((P(c))\)

(* \(P(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_1 c + a_0 \) *)

Correctness

By Induction
The Horner’s Algorithm

Example II

- **Input:** Evaluate \(P(x) = 5x^4 - 7x^2 + 3x - 11 \) for \(c = 2 \)
 - In the above polynomial \(a_3 = 0 \)

Running the algorithm

\[
\begin{align*}
P_4(x) & = a_4 = 5 \\
P_3(x) & = P_4(x) \cdot c + a_3 = 5 \cdot 2 + 0 = 10 \\
P_2(x) & = P_3(x) \cdot c + a_2 = 10 \cdot 2 - 7 = 13 \\
P_1(x) & = P_2(x) \cdot c + a_1 = 13 \cdot 2 + 3 = 29 \\
P(x) & = P_1(x) \cdot c + a_0 = 29 \cdot 2 - 11 = 47
\end{align*}
\]
The Prefix-Sum Problem

The Horner’s Algorithm

Complexity

- 1 multiplication in the i^{th} iteration of the loop
- 1 addition in the i^{th} iteration of the loop
- Total of $2n$ operations: n multiplications and n additions
- $\Theta(n)$ overall complexity
A Dictionary Search Problem

Input
- A key K

Output
- Does K appear in A? **YES** or **NO**
 - If **YES**: The first index i such that $A[i] = K$
 - If **NO**: The largest index i such that $A[i] < K$ or $i = 0$ if $K < A[1]$

Method
- **Comparisons** between K and the keys in the array

Complexity
- Number of **comparisons**
A Search Game

Game
- **Player 1**: Selects an integer \(x \) in the range \([1..n]\)
- **Player 2**: Searches for \(x \) only with comparisons of the type \(x \leq i \) for some \(1 \leq i \leq n \)

Players Goal
- **Player 1** tries to maximize the number of comparisons until Player 2 finds the value of \(x \)
- **Player 2** tries to minimize the number of comparisons until finding the value of \(x \)

Complexity: number of comparisons
- In the worst case or in the average case
- As a function of \(n \)
The Two Models are “Equivalent”

Equivalence
- $x \leq i$ is “equivalent” to $K \leq A[i]$
- Algorithms can be “converted” from one model to another while preserving the complexity

Convinience
- It is “easier” to design algorithms in the search game model
- It is “easier” to prove bounds and limitations on algorithms in the search game model
Sequential Search

Algorithm outline

- Assume a search for \(x \) in the range \([1..n]\)
- Throughout the algorithm, maintain a lower bound \(\ell \) on \(x \) such that \(\ell \leq x \leq n \)
- Initially, \(\ell = 1 \)
- In each round, compare \(x \) with the lower bound \(\ell \)
 - If \(x > \ell \) then increment \(\ell \) by 1
 - If \(x \leq \ell \) then return \(\ell \)
Sequential Search

Example

- **Input:** \(n = 10 \) and \(x = 7 \) \(\Rightarrow \) \((* x \in [1..10] *)\)

- **Search procedure:**
 - Q1: \(x \leq 1 \) \(\Rightarrow \) A1: NO \((* x \in [2..10] *)\)
 - Q2: \(x \leq 2 \) \(\Rightarrow \) A2: NO \((* x \in [3..10] *)\)
 - Q3: \(x \leq 3 \) \(\Rightarrow \) A3: NO \((* x \in [4..10] *)\)
 - Q4: \(x \leq 4 \) \(\Rightarrow \) A4: NO \((* x \in [5..10] *)\)
 - Q5: \(x \leq 5 \) \(\Rightarrow \) A5: NO \((* x \in [6..10] *)\)
 - Q6: \(x \leq 6 \) \(\Rightarrow \) A6: NO \((* x \in [7..10] *)\)
 - Q7: \(x \leq 7 \) \(\Rightarrow \) A7: YES \((* x \in [7..7] *)\)

- **Output:** \(x = 7 \)

- **Complexity:** 7 comparisons
Sequential Search

Algorithm pseudocode I

Sequential-Search \((n, x)\)

\[
\ell = 1 \\
\text{repeat} \\
\quad \text{if } x \leq \ell \quad (* \text{comparison} *) \\
\quad \text{then return } \ell \\
\quad \text{else } \ell = \ell + 1
\]

Algorithm pseudocode II

Sequential-Search \((n, x)\)

\[
\ell = 1 \\
\text{while } x > \ell \text{ do } (* \text{comparison} *) \\
\quad \ell = \ell + 1 \\
\text{return } \ell
\]
Correctness

By induction, $\ell \leq x \leq n$ after $\ell - 1$ comparisons with a NO answer.

Termination

- If $x \leq \ell$ then necessarily $x = \ell$ because by the induction hypothesis $x \geq \ell$
- Eventually $x \leq n$
Sequential Search

Worst case complexity
- n comparisons in the worst case when $x = n$
- Possible $n - 1$ comparisons since there is no need for the last question when $x = n$

Best case complexity
- Only 1 comparison when $x = 1$

Average case complexity
- $(n + 1)/2$ comparisons on average for a random x selected with a uniform distribution from the range $[1..n]$:

$$\frac{1}{n} (1 + 2 + \cdots + n) = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$
Sequential Search

Searching in an array pseudocode

\[
\begin{align*}
\text{if } K < A[1] \text{ then return } (K < A[1]) \quad (* \text{ comparison } *) \\
\text{if } K > A[n] \text{ then return } (K > A[n]) \quad (* \text{ comparison } *) \\
\ell = 1 \\
\text{while } K > A[\ell] \text{ do} \\
\quad \ell = \ell + 1 \\
\text{if } K < A[\ell] \quad (* \text{ comparison } *) \\
\quad \text{then return } (A[\ell - 1] < K < A[\ell]) \\
\quad \text{else return } (K = A[\ell])
\end{align*}
\]

Worst case number of comparisons

- \(n + 3\) comparisons when \(K = A[n]\)
Binary Search

Algorithm outline

1. Assume a search for x in the range $[1..n]$
2. Throughout the algorithm, maintain a range $[\ell..u]$ such that $\ell \leq x \leq u$
3. Initially, $\ell = 1$ and $u = n$
4. In each round, compare x with the middle of the range $m = \left\lfloor \frac{u+\ell}{2} \right\rfloor$
 - If $x \leq m$ then update $u = m$
 - If $x > m$ then update $\ell = m + 1$
5. Terminate when $\ell = u$
6. Return $x = \ell = u$
Binary Search – Example

Input: \(n = 128 \) and \(x = 50 \) \(\Rightarrow \) (*) \(x \in [1..128] \) *)

Search procedure:

- Q1: \(x \leq 64 \) \(\Rightarrow \) A1: YES (*) \(x \in [1..64] \) *)
- Q2: \(x \leq 32 \) \(\Rightarrow \) A2: NO (*) \(x \in [33..64] \) *)
- Q3: \(x \leq 48 \) \(\Rightarrow \) A3: NO (*) \(x \in [49..64] \) *)
- Q4: \(x \leq 56 \) \(\Rightarrow \) A4: YES (*) \(x \in [49..56] \) *)
- Q5: \(x \leq 52 \) \(\Rightarrow \) A5: YES (*) \(x \in [49..52] \) *)
- Q6: \(x \leq 50 \) \(\Rightarrow \) A6: YES (*) \(x \in [49..50] \) *)
- Q7: \(x \leq 49 \) \(\Rightarrow \) A7: NO (*) \(x \in [50..50] \) *)

Output: \(x = 50 \)

Complexity: \(7 = \log_2(128) \) comparisons
Binary Search

Algorithm pseudocode

Binary-Search \((n, x)\)

\[
\ell = 1 \\
u = n \\
\text{while } \ell < u \\
\quad m = \left\lfloor \frac{u + \ell}{2} \right\rfloor \\
\quad \text{if } x \leq m \quad (* \text{comparison} *) \\
\quad \quad \text{then } u = m \\
\quad \quad \text{else } \ell = m + 1 \\
\text{return } \ell
\]
Binary Search

Notations
- Let u_j and ℓ_j be the values of u and ℓ after iteration j of the algorithm.
- Let $\Delta_j = u_j - \ell_j + 1$ be the size of the range $[\ell_j..u_j]$.
- Initially $\ell_0 = 1$, $u_0 = n$, and $\Delta_0 = n$.

Observation
- $\Delta_{j+1} \leq \left\lceil \frac{\Delta_j}{2} \right\rceil$ for $j \geq 0$.

Corollary
- $\Delta_k = 1$ for $k = \left\lfloor \log_2 n \right\rfloor$.
Binary Search – Correctness and Complexity

Correctness

- By induction, always $\ell \leq x \leq u$
- At the end, $\Delta = 1$ and therefore $\ell = u$ which implies that $x = \ell = u$

Complexity

- There are at most $\lceil \log_2 n \rceil$ iterations and one comparison per iteration
- Therefore, the worst-case complexity is $\lceil \log_2 n \rceil$
- If n is not a power of 2, then for some x there are only $\lfloor \log_2 n \rfloor$ iterations
- Therefore, the average-case complexity is approximately $\log_2 n$
Binary Search

Searching in an array pseudocode

if \(K < A[1]\) then return \((K < A[1])\) (* comparison *)

if \(K > A[n]\) then return \((K > A[n])\) (* comparison *)

\(\ell = 1\) and \(u = n\)

while \(\ell < u\)

\(m = \left\lfloor \frac{u + \ell}{2} \right\rfloor\)

if \(x \leq A[m]\) (* comparison *)

then \(u = m\)
else \(\ell = m + 1\)

if \(K < A[\ell]\) (* comparison *)

then return \((A[\ell - 1] < K < A[\ell])\)
else return \((K = A[\ell])\)

Number of comparisons

\([\log_2 n] + 3\) comparisons
Binary-Search vs. Sequential-Search

<table>
<thead>
<tr>
<th></th>
<th>Binary-Search</th>
<th>Sequential-Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-Case</td>
<td>⌊log₂ (n)⌋</td>
<td>1</td>
</tr>
<tr>
<td>Worst-Case</td>
<td>⌈log₂ (n)⌉</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>Average-Case</td>
<td>(\approx \log₂ (n))</td>
<td>(\approx \frac{n + 1}{2})</td>
</tr>
</tbody>
</table>
Dictionary Search

Adversary Player I

Goal
- Maximize the number of *comparisons* until **Player 2** finds x

Strategy
- **Player 1** **Does not** select x at the beginning of the game. Instead, it maintains a set of candidates S for x
- Given a search question:
 - $S(Y)$ – the set of candidates if the answer is **YES**
 - $S(N)$ – the set of candidates if the answer is **NO**
- The adversary answer rule:
 - **YES** if $|S(Y)| \geq |S(N)|$
 - **NO** if $|S(Y)| < |S(N)|$
Adversary Player I

Example: A possible algorithm

- **Input:** \(n = 34 \) (* \(x \in [1..34] \) *)
- **Search:**
 - Q1: \(x \leq 13 \) ⇒ A1: NO (* \(x \in [14..34] \) *)
 - Q2: \(x \leq 26 \) ⇒ A2: YES (* \(x \in [14..26] \) *)
 - Q3: \(x \leq 18 \) ⇒ A3: NO (* \(x \in [19..26] \) *)
 - Q4: \(x \leq 23 \) ⇒ A4: YES (* \(x \in [19..23] \) *)
 - Q5: \(x \leq 20 \) ⇒ A5: NO (* \(x \in [21..23] \) *)
 - Q6: \(x \leq 22 \) ⇒ A6: YES (* \(x \in [21..22] \) *)
 - Q7: \(x \leq 21 \) ⇒ A7: YES (* \(x \in [21..21] \) *)
- **Output:** \(x = 21 \)
Adversary Player I

Example: Binary-Search

- **Input:** \(n = 34 \) \((^* x \in [1..34] *)\)
- **Search:**
 - Q1: \(x \leq 17 \) \(\Rightarrow \) A1: YES \((^* x \in [1..17] *)\)
 - Q2: \(x \leq 9 \) \(\Rightarrow \) A2: YES \((^* x \in [1..9] *)\)
 - Q3: \(x \leq 5 \) \(\Rightarrow \) A3: YES \((^* x \in [1..5] *)\)
 - Q4: \(x \leq 3 \) \(\Rightarrow \) A4: YES \((^* x \in [1..3] *)\)
 - Q5: \(x \leq 2 \) \(\Rightarrow \) A5: YES \((^* x \in [1..2] *)\)
 - Q6: \(x \leq 1 \) \(\Rightarrow \) A6: YES \((^* x \in [1..1] *)\)
- **Output:** \(x = 1 \)

Observation

With Binary-Search the search always ends up with \(x = 1 \)
Impossible to Search Faster than Binary Search

Theorem

There exists $1 \leq x \leq n$ for which the Adversary Player 1 forces Player 2 to ask at least $\lceil \log_2 n \rceil$ comparisons.

Proof

Assume that Player 2 asks k comparisons to find x.

Let S_i be the set of candidates after i comparisons.

In particular, $|S_0| = n$ and $|S_k| = 1$.

$S = S(Y) \cup S(N)$ implies that $|S_{i+1}|/|S_i| \geq (1/2)$ for $1 \leq i \leq k - 1$.

$\lceil \log_2 n \rceil$ rounds are required to decrease n to 1 by halving.

Therefore, $k \geq \lceil \log_2 n \rceil$.

Remarks

Worst case
- The \([\log_2 n]\) lower bound is a worst case bound
- No algorithm can guarantee less comparisons for all values of \(x\)

Average case
- It is possible to prove an \(\Omega(\log n)\) average case lower bound

Other search models
- The theorem holds for a “stronger” Player 2 – one that may ask any YES/NO questions. For example,
 - Is \(x\) even?
 - Is \(x\) a prime number?
 - Is \(x \in \{1, 2, 3, 5, 8, 13, 21, 34\}\)?
Searching with “Clues”

Clue

- **Player 1** selects only even numbers 2, 4, 6, 8, ... between 1 and an even \(n \)

A modified Binary Search

- The search domain is 1, 2, ..., \(n/2 \)
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq 2i \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”
- When the search outputs \(x = i \) the modified search outputs \(2i \)

Complexity

- \(\lceil \log_2(n/2) \rceil \approx \log_2(n/2) = \log_2(n) - 1 \) comparisons
- The saving is only 1 comparison although the clue “eliminated” about half of the candidates!
Searching with “Clues”

Clue
- **Player 1** selects only even numbers 2, 4, 6, 8, ... between 1 and an even n

Example
- $n = 32 = 2 \cdot 16$ and $x = 20 = 2 \cdot 10$
- The possible 16 values for x are 2, 4, 6, ..., 32 and the search domain is 1, 2, ..., 16

Running the algorithm
- Question 1: $x \leq (2 \cdot 8 = 16)$? because $8 = \lfloor (1 + 16)/2 \rfloor$
- Question 2: $x \leq (2 \cdot 12 = 24)$? because $12 = \lfloor (9 + 16)/2 \rfloor$
- Question 3: $x \leq (2 \cdot 10 = 20)$? because $10 = \lfloor (9 + 12)/2 \rfloor$
- Question 4: $x \leq (2 \cdot 9 = 18)$? because $9 = \lfloor (9 + 10)/2 \rfloor$
- $x = 20$ found with $4 = \log_2 16 = \log_2 31 - 1$ comparisons
Searching with “Clues”

Clue

- **Player 1** selects only square numbers 1, 4, 9, 16, ... between 1 and a square number \(n \)

A modified Binary Search

- The search domain is 1, 2, ..., \(\sqrt{n} \)
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq i^2 \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”
- When the search outputs \(x = i \) the modified search outputs \(i^2 \)

Complexity

- \(\lceil \log_2(\sqrt{n}) \rceil \approx \log_2(\sqrt{n}) = \frac{1}{2} \log_2(n) \) comparisons
- The saving is only half of the comparisons although the clue “eliminated” almost all the candidates!
Searching with “Clues”

Clue

- **Player 1** selects only square numbers 1, 4, 9, 16, … between 1 and a square number n

Example

- $n = 256 = 16^2$ and $x = 100 = 10^2$
- The possible 16 values for x are 1, 4, 9, …, 256 and the search domain is 1, 2, …, 16

Running the algorithm

- Question 1: $x \leq (8^2 = 64)$? because $8 = \lceil (1 + 16)/2 \rceil$
- Question 2: $x \leq (12^2 = 144)$? because $12 = \lceil (9 + 16)/2 \rceil$
- Question 3: $x \leq (10^2 = 100)$? because $10 = \lceil (9 + 12)/10 \rceil$
- Question 4: $x \leq (9^2 = 81)$? because $9 = \lceil (9 + 10)/10 \rceil$
- $x = 100$ found with $4 = \log_2 16 = (1/2) \log_2 256$ comparisons
Searching with “Clues”

Clue
- **Player 1** selects only powers of 2 numbers 2, 4, 8, 16, ... between 2 and a power of 2 number \(n \)

A modified Binary Search
- The search domain is \(1, 2, \ldots, \log_2 n \)
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq 2^i \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”
- When the search outputs \(x = i \) the modified search outputs \(2^i \)

Complexity
- \([\log_2(\log_2(n))] \approx \log_2(\log_2(n))\) comparisons
- For \(n = 2^{32} = 4294967296 \) the saving is from 32 to 5 comparisons although there are only 32 candidates!
Searching with “Clues”

Clue

- **Player 1** selects only powers of 2 numbers 2, 4, 8, 16, \ldots between 2 and a power of 2 number \(n\)

Example

- \(n = 65536 = 2^{16}\) and \(x = 1024 = 2^{10}\)
- The possible 16 values for \(x\) are 2, 4, 8, \ldots, 65536 and the search domain is 1, 2, \ldots, 16

Running the algorithm

- **Question 1:** \(x \leq (2^8 = 256)?\) \(8 = \left\lfloor \frac{1 + 16}{2} \right\rfloor\)
- **Question 2:** \(x \leq (2^{12} = 4096)?\) \(12 = \left\lfloor \frac{9 + 16}{2} \right\rfloor\)
- **Question 3:** \(x \leq (2^{10} = 1024)?\) \(10 = \left\lfloor \frac{9 + 12}{10} \right\rfloor\)
- **Question 4:** \(x \leq (2^9 = 512)?\) \(9 = \left\lfloor \frac{9 + 10}{10} \right\rfloor\)
- \(x = 1024\) found with \(4 = \log_2 16 = \log_2 \log_2 65536\) comparisons
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, ... not larger than \(n \)

A modified Binary Search
- The search domain is 1, 2, ..., \(\pi(n) \) where \(\pi(n) \) is the number of primes between 2 and \(n \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq p_i \)” where \(p_i \) is the \(i \)th prime and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(p_i \).

Complexity
- \(\log_2(n / \ln(n)) \approx \log_2(n) - \log_2 \log_2(n) \) comparisons because there are approximately \(n / \ln(n) \) primes between 2 and \(n \).
- There are 78498 primes between 2 and 1000000. The clue saves only 3 comparisons, because \(\lceil \log_2(1000000) \rceil = 20 \) and \(\lceil \log_2(78498) \rceil = 17 \).
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, ... not larger than \(n \)

Example
- \(n = 53 \) and \(x = 29 \)
- The possible 16 values for \(x \) are
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
- and the search domain is 1, 2, ... , 16

Running the algorithm
- Question 1: \(x \leq (p_8 = 19) \)? \(8 = \lceil (1 + 16)/2 \rceil \)
- Question 2: \(x \leq (p_{12} = 37) \)? \(12 = \lceil (9 + 16)/2 \rceil \)
- Question 3: \(x \leq (p_{10} = 29) \)? \(10 = \lceil (9 + 12)/10 \rceil \)
- Question 4: \(x \leq (p_9 = 23) \)? \(9 = \lceil (9 + 10)/10 \rceil \)
- \(x = 29 \) found with \(4 \approx \log_2(53) - \log_2 \log_2(53) \) comparisons
Searching an Unbounded Domain

Game

- **Player 1**: Selects any positive integer \(x \)
- **Player 2**: Searches for \(x \) with comparisons \(x \leq i \) for some integer \(i \)

Adversary Player 1

- Always answers **NO**
- **Player 2** will never find \(x \! \)!

Player 2 Goal

- Find \(x \) with as minimum possible comparisons as a function of \(x \)
- Ask "few" comparisons when \(x \) is small and ask "more" comparisons when \(x \) is large
Searching an Unbounded Domain

Sequential search
- Sequential search finds x with exactly x comparisons

The doubling technique
- A strategy that finds x with approximately $2 \log_2(x)$ comparisons

A more sophisticated doubling technique
- A strategy that finds x with approximately $\log_2(x) + 2 \log_2 \log_2(x)$ comparisons

Optimal solution
- A strategy that finds x with approximately $\log_2(x) + \log_2 \log_2(x) + \log_2 \log_2 \log_2(x) + \cdots$ comparisons.
The Doubling Technique

Strategy

- **Phase 1:** Ask the following comparisons until the answer is **YES**:
 \[x \leq 1? \quad x \leq 2? \quad x \leq 4? \quad x \leq 8? \quad \cdots \quad x \leq 2^j? \quad \cdots \]

- Assume \(2^{k-1} < x \leq 2^k \)

- **Phase 2:** Apply binary search on the domain \([2^{k-1} + 1..2^k]\)

Complexity

- \(k + 1 \) comparisons are asked in **Phase 1**

- The number of comparisons asked in **Phase 2** is
 \[
 \left\lfloor \log_2(2^k - (2^{k-1} + 1) + 1) \right\rfloor = \left\lfloor \log_2(2^{k-1}) \right\rfloor = k - 1
 \]

- Total number of comparisons:
 \[
 (k + 1) + (k - 1) = 2k = 2 \left\lceil \log_2(x) \right\rceil
 \]
The Doubling Technique – Example

Input: $x = 50$

Search procedure:

- Q1: $x \leq 1$ ⇒ A1: NO (* $x \in [2..\infty]$ *)
- Q2: $x \leq 2$ ⇒ A2: NO (* $x \in [3..\infty]$ *)
- Q3: $x \leq 4$ ⇒ A3: NO (* $x \in [5..\infty]$ *)
- Q4: $x \leq 8$ ⇒ A4: NO (* $x \in [9..\infty]$ *)
- Q5: $x \leq 16$ ⇒ A5: NO (* $x \in [17..\infty]$ *)
- Q6: $x \leq 32$ ⇒ A6: NO (* $x \in [33..\infty]$ *)
- Q7: $x \leq 64$ ⇒ A7: YES (* $x \in [33..64]$ *)
- Q8: $x \leq 48$ ⇒ A8: NO (* $x \in [49..64]$ *)
- Q9: $x \leq 56$ ⇒ A9: YES (* $x \in [49..56]$ *)
- Q10: $x \leq 52$ ⇒ A10: YES (* $x \in [49..52]$ *)
- Q11: $x \leq 50$ ⇒ A11: YES (* $x \in [49..50]$ *)
- Q12: $x \leq 49$ ⇒ A12: NO (* $x \in [50..50]$ *)

Output: $x = 50$

Complexity: $12 = \lceil 2 \log_2 50 \rceil$ comparisons