Discrete Structures
Number Theory and Cryptography

Amotz Bar-Noy

Department of Computer and Information Science
Brooklyn College
Journey into cryptography: Ancient Cryptography

All videos
- https://www.khanacademy.org/computing/computer-science/cryptography

List of videos
- What is cryptography? https://youtu.be/Kf9KjCKmDcU
- The Caesar cipher: https://youtu.be/sMOZf4GN3oc
- Polyalphabetic cipher: https://youtu.be/BgFJD7oCmDE
- The one-time pad: https://youtu.be/FlIG3TvQCBQ
- Frequency stability property: https://youtu.be/vVXbgbMp0oY
- The Enigma encryption machine: https://youtu.be/-1ZFVwMXSXY
- Perfect secrecy: https://youtu.be/vKRMWewGE9A
- Pseudorandom number generators: https://youtu.be/GtOt7EBNEWQ
Prime Numbers

Prime and Composite Numbers

- A positive integer \(p \geq 2 \) is **prime** if its only divisors are 1 and itself
- A positive integer \(n \geq 2 \) is **composite** if it has at least 3 divisors
- 1 is either a prime or not but it is not a composite number

The Fundamental Theorem of Arithmetic

- Every integer greater than 1 is either a prime number itself or can be represented with a **unique** product of prime numbers
- **Story:** https://youtu.be/8CluknrLeys
Primality Test and Factoring

Tasks

- **Primality test:** determine whether an input integer is a prime number or a composite number
- **Integer factorization:** decompose an input integer into its unique product of primes

Hardness

- It is *relatively easy* to test if a very large number is prime
 - Almost surely with high probability
- It is *extremely difficult* to factor a very large number
 - Especially if the number is a product of 2 very large prime numbers
The Natural Primality Test

Algorithm

- **Input**: an integer $n \geq 2$
- Set $s = n - 1$
- For all $2 \leq d \leq s$ check if d is a divisor of n
 - If yes then **abort** because n is not a prime number
 - If no then **continue**
- If this step is reached then n is a prime number

Improvement

- Set $s = \lfloor \sqrt{n} \rfloor$
- If $q > \lfloor \sqrt{n} \rfloor$ is a divisor of n then $n = d \cdot q$ for $d < \lfloor \sqrt{n} \rfloor$ and d is another divisor of n
- There is no need to check if q divides n because the algorithm will **abort** after checking if d is a divisor of n
Psuedocode

Data: An integer $n \geq 2$

Result: n is a prime or a composite number

$s := \lfloor \sqrt{n} \rfloor; \quad d := 2;$

while $d \leq s$ **do**

- **if** d is not a divisor of n **then**
 - $d := d + 1;$
- **else**
 - abort;

end

if $d > s$ **then**

- n is a prime number;

else

- n is a composite number;

end
The Natural Integer Factorization Algorithm

Algorithm

- **Input:** an integer \(n \geq 2 \)
- Set \(D = () \) to be an empty list
- Set \(d = 2 \)
- Set \(m = n \)
- Repeat the following procedure until \(m = 1 \)
 - If \(d \) is a divisor of \(m \) then
 * Append \(d \) at the end of the list \(D \)
 * Set \(m = m / d \)
 - If \(d \) is not a divisor of \(m \) then increment \(d \) by one
- Assume: \(D = (d_1 \leq d_2 \leq \cdots \leq d_k) \)
- **Output:** \(n = d_1 d_2 \cdots d_k = p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h} \)
Example

The Prime factors of 360

Initially: $m = 360, d = 2, D = ()$

$$
\begin{align*}
2 \mid 360 & \implies m = 180, d = 2, D = (2) \\
2 \mid 180 & \implies m = 90, d = 2, D = (2, 2) \\
2 \mid 90 & \implies m = 45, d = 2, D = (2, 2, 2) \\
2 \not\mid 45 & \implies m = 45, d = 3, D = (2, 2, 2) \\
3 \mid 45 & \implies m = 15, d = 3, D = (2, 2, 2, 3) \\
3 \mid 15 & \implies m = 5, d = 3, D = (2, 2, 2, 3, 3) \\
3 \not\mid 5 & \implies m = 5, d = 4, D = (2, 2, 2, 3, 3) \\
4 \not\mid 5 & \implies m = 5, d = 5, D = (2, 2, 2, 3, 3) \\
5 \mid 5 & \implies m = 1, d = 5, D = (2, 2, 2, 3, 3, 5)
\end{align*}
$$

Return: $360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^3 \cdot 3^2 \cdot 5$
Example

The Prime factors of 1001

Initially: \(m = 1001, \ d = 2, \ D = () \)

\[
\begin{align*}
\{2, 3, 4, 5, 6\} \not| 1001 & \implies m = 1001, \ d = 7, \ D = () \\
7 \ | 1001 & \implies m = 143, \ d = 7, \ D = (7) \\
\{7, 8, 9, 10\} \not| 143 & \implies m = 143, \ d = 11, \ D = (7) \\
11 \ | 143 & \implies m = 13, \ d = 11, \ D = (7, 11) \\
\{11, 12\} \not| 13 & \implies m = 13, \ d = 13, \ D = (7, 11) \\
13 \ | 13 & \implies m = 1, \ d = 13, \ D = (7, 11, 13)
\end{align*}
\]

Return: \(1001 = 7 \cdot 11 \cdot 13 \)
The Natural Integer Factorization Algorithm

Psaudocode

Data: An integer \(n \geq 2 \)

Result: The unique prime factorization of \(n \)

\[
d := 2; \quad m := n; \quad D := () \quad (* \text{an empty list} *) ;
\]

while \(m > 1 \) do

\[
\begin{align*}
\text{if } d \text{ is a divisor of } m \text{ then} & \\
& m := m/d; \\
& \text{Append } d \text{ to the end of the list } D;
\end{align*}
\]

else

\[
\begin{align*}
& d := d + 1
\end{align*}
\]

end

end

\(D = (d_1, d_2, \ldots, d_k); \)

Return: \(n = d_1 d_2 \cdots d_k \)
Sieve of Eratosthenes

Algorithm: Find all the prime numbers that are smaller than \(N \)

- Initially: set all the numbers 2, 3, \ldots, \(N \) as prime candidates
- Set \(p = 2 \)
- Repeat the following procedure until \(p > \sqrt{N} \):
 - Mark \(p \) as a prime number
 - Mark all the \(\left\lfloor \frac{N}{p} \right\rfloor - 1 \) multiples of \(p \) (except \(p \)) as non-prime numbers
 - Set \(p \) to be the smallest remaining candidate
- Mark all the remaining candidates as prime numbers

Online resources

- https://youtu.be/klcIklsWzrY
- https://www.youtube.com/watch?v=dhfhu9Q5g8U
There are infinitely many prime numbers

Proof

- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes
- Let $Q = p_1 p_2 \cdots p_n + 1$
- If Q is a prime, then a new prime is found
- Otherwise, Q is a product of two or more primes due to **The Fundamental Theorem of Arithmetic**
 - None of these primes can be p_1, \ldots, p_n because a number greater than 1 cannot be a divisor of both Q and $Q - 1$
 - Therefore, a new prime is found
 - This process can continue to find infinitely many primes

Online resources

- The original proof by Euclid: https://youtu.be/dQmdHpvfJYs
- Another proof: https://youtu.be/f0XZgca5rP8
Modular Arithmetic

Notations

\[n = q \cdot d + r \quad (\ast 0 \leq r < d \ast) \]

\[n \mod d = r \]

- \(n \): dividend; \(d \): divisor; \(q \): quotient; \(r \): remainder

Examples

- \(7 \mod 3 = 1 \) because \(7 = 2 \cdot 3 + 1 \)
- \(25 \mod 5 = 0 \) because \(25 = 5 \cdot 5 + 0 \)
- \(101 \mod 7 = 3 \) because \(101 = 14 \cdot 7 + 3 \)

Definitions

- If \(n \mod d = 0 \) then \(d \mid n \)
- \(d \) divides \(n \) and is a divisor of \(n \) while \(n \) is a multiple of \(d \)
Negative Numbers

Which parts can be negative?

- The **dividend** \((n)\), **quotient** \((q)\), and **remainder** \((r)\) can be negative
- The **divisor** \((d)\) is “always” **positive**

Negative \(n\) and \(q\)

- \(-18 \mod 7 = 3\) because \(-18 = -3 \cdot 7 + 3\)
- \(-55 \mod 5 = 0\) because \(-55 = -11 \cdot 5 + 0\)

Negative \(r\)

- If \(n = q \cdot d + r\) for \(0 \leq r < d\) then
 \(n = (q + 1) \cdot d - (d - r)\) for \(0 \leq d - r < d\)
 - Useful for modular operations when \(d - r < r\)
- \(103 \mod 7 = 5 = -2\) since \(103 = 14 \cdot 7 + 5 = 15 \cdot 7 - 2\)
Notation
For integers \(-\infty < n, m < \infty\) and positive integer \(d > 1\):

\[
\text{If } (n \mod d) = (m \mod d) \text{ then } n \equiv m \mod d
\]

Congruence is an Equivalence Relation

- Reflexive property: \(n \equiv n \mod d\)
 - \(27 \equiv 27 \mod 5\)

- Symmetry property: \(n \equiv m \mod d \iff m \equiv n \mod d\)
 - \(27 \equiv 52 \mod 5 \iff 52 \equiv 27 \mod 5\)

- Transitive property:
 \((n \equiv m \mod d) \land (m \equiv k \mod d) \implies n \equiv k \mod d\)
 - \((52 \equiv 27 \mod 5) \land (27 \equiv 12 \mod 5) \implies 52 \equiv 12 \mod 5\)

Proofs idea
There exist \(q_n, q_m, q_k,\) and \(0 \leq r < d\) such that
\[n = q_n d + r; \quad m = q_m d + r; \quad \text{and } k = q_k d + r\]
Basic Properties

Proposition
- For integers $-\infty < n, k < \infty$ and positive integer $d > 1$:
 \[(n \mod d) = ((n + kd) \mod d) \implies n \equiv n + kd \pmod{d} \]

Examples
- $(7 \mod 5) = (12 \mod 5) = (112 \mod 5) = 2$
 \[\implies 7 \equiv 12 \equiv 112 \pmod{5} \]
- $(-3 \mod 7) = (4 \mod 7) = (11 \mod 7) = 4$
 \[\implies -3 \equiv 4 \equiv 11 \pmod{7} \]

Proof outline
- $n = qd + r$
- $n + kd = (q + k)d + r$
Basic Properties

Proposition

For integers $-\infty < n, m < \infty$ and positive integer $d > 1$:

$$(n \mod d) = (m \mod d) \implies d \mid (n - m)$$

Examples

1. $(100 \mod 7) = (23 \mod 7) = 2 \implies 7 \mid (100 - 23) = 77$
2. $(10 \mod 3) = (-8 \mod 3) = 1 \implies 3 \mid (10 - (-8)) = 18$

Proof Outline

1. $n = q_n d + r$
2. $m = q_m d + r$
3. $(n - m) = (q_n - q_m) d$
Modular Addition

Proposition
- For integers $-\infty < n, m < \infty$ and positive integer $d > 1$:

 $$ (n + m) \mod d = ((n \mod d) + (m \mod d)) \mod d $$

Example
- $(55 \mod 5) = 0$ because $55 = 11 \cdot 5 + 0$

 $$ 55 \mod 5 = (34 + 21) \mod 5 $$

 $$ = ((34 \mod 5) + (21 \mod 5)) \mod 5 $$

 $$ = (4 + 1) \mod 5 $$

 $$ = 5 \mod 5 $$

 $$ = 0 $$
A Modular Addition Table for $d = 5$

$$
\begin{array}{|c|c|c|c|c|c|}
\hline
+ & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 0 \\
2 & 2 & 3 & 4 & 0 & 1 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$
A Modular Addition Table for $d = 6$

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Modular Subtraction

Proposition

For integers $-\infty < n, m < \infty$ and positive integer $d > 1$:

$$(n - m) \mod d = ((n \mod d) - (m \mod d)) \mod d$$

Example

$(8 \mod 5) = 3$ because $8 = 1 \cdot 5 + 3$

$$8 \mod 5 = (21 - 13) \mod 5$$
$$= ((21 \mod 5) - (13 \mod 5)) \mod 5$$
$$= (1 - 3) \mod 5$$
$$= -2 \mod 5$$
$$= 3$$
A Modular Subtraction Table for \(d = 5 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
A Modular Subtraction Table for $d = 6$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Proposition

For integers $\neg \infty < n, m < \infty$ and positive integer $d > 1$:

$$(n \cdot m) \mod d = ((n \mod d)(m \mod d)) \mod d$$

Example

$$(132 \mod 7) = 6 \text{ because } 132 = 18 \cdot 7 + 6$$

$$132 \mod 7 = (12 \cdot 11) \mod 7$$

$$= ((12 \mod 7)(11 \mod 7)) \mod 7$$

$$= (5 \cdot 4) \mod 7$$

$$= 20 \mod 7$$

$$= 6$$
A Modular Multiplication Table for $d = 5$

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
A Modular Multiplication Table for $d = 6$

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Modular Inverse

Definition
- Let $0 < n < d$ be two relatively prime (coprime) integers
 - $\gcd(n, d) = 1$
- The inverse of n modulo d is an integer $0 < m < d$ such that
 - $(mn \mod d) = 1$
- If $(mn \mod d) = 1$ then
 - $(n^{-1} \mod d) = m$ and $(m^{-1} \mod d) = n$

Symmetry
- n is the inverse of m modulo d iff m is the inverse of n modulo d
 - $m = n^{-1} \iff n = m^{-1}$
Modular Inverse

Examples

- 3 is the inverse of 5 modulo 7 because \((3 \cdot 5 = 15) \mod 7 = 1\)
- 5 is the inverse of itself modulo 6 because \((5 \cdot 5 = 25) \mod 6 = 1\)
- 3 has no inverse modulo 6 because \(3 \cdot x \mod 6\) is either 0 or 3

Propositions

- 1 is the inverse of itself modulo \(d\)
 \[
 (1 \cdot 1) \mod d = 1 \mod d = 1
 \]
- \(d - 1\) is the inverse of itself modulo \(d\) for any integer \(d > 1\)
 \[
 (d - 1)^2 \mod d = (d^2 - 2d + 1) \mod d
 = ((d - 2)d + 1) \mod d
 = (((d - 2)d) \mod d + (1 \mod d)) \mod d
 = (0 + 1) \mod d
 = 1 \mod d
 \]
Modular Division

Proposition
- For integers \(-\infty < n, m < \infty\) relatively prime to a positive integer \(d > 1\)

\[
(n/m) \mod d = (n \cdot m^{-1}) \mod d
\]

\[
= (((n \mod d)(m^{-1} \mod d)) \mod d)
\]

Example
- \((33 \mod 7) = 5\) because \(33 = 4 \cdot 7 + 5\)

\[
33 \mod 7 = (99/3) \mod 7
\]

\[
= ((99 \mod 7)(3^{-1} \mod 7)) \mod 7
\]

\[
= (1 \cdot 5) \mod 7
\]

\[
= 5 \mod 7
\]

\[
= 5
\]
A Modular Division Table for $d = 5$

<table>
<thead>
<tr>
<th>\div</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\bot</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>\bot</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>\bot</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>\bot</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>\bot</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
A Modular Division Table for $d = 6$

<table>
<thead>
<tr>
<th>\div</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>${0, 3}$</td>
<td>${0, 2, 4}$</td>
<td>${0, 3}$</td>
</tr>
<tr>
<td>1</td>
<td>${}$</td>
<td>1</td>
<td>${}$</td>
<td>${}$</td>
<td>${}$</td>
<td>${}$</td>
</tr>
<tr>
<td>2</td>
<td>${}$</td>
<td>2</td>
<td>${1, 4}$</td>
<td>${}$</td>
<td>${2, 5}$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>${}$</td>
<td>3</td>
<td>${}$</td>
<td>${1, 3, 5}$</td>
<td>${}$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>${}$</td>
<td>4</td>
<td>${2, 5}$</td>
<td>${}$</td>
<td>${1, 4}$</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>${}$</td>
<td>5</td>
<td>${}$</td>
<td>${}$</td>
<td>${0, 3}$</td>
<td>1</td>
</tr>
</tbody>
</table>
Modular Exponentiation

Proposition

For integers $-\infty < n < \infty$, $k \geq 0$, and $d > 1$:

$$n^k \mod d = ((n \mod d)^k) \mod d$$

Example

$$(729 \mod 7) = 1 \text{ because } 729 = 104 \cdot 7 + 1$$

$$729 \mod 7 = (9^3) \mod 7$$
$$= ((9 \mod 7)^3) \mod 7$$
$$= 2^3 \mod 7$$
$$= 8 \mod 7$$
$$= 1$$
Modular Exponentiation

Another Example

\[(100000 \mod 7) = 5 \text{ because } 100000 = 14285 \cdot 7 + 5\]

\[
100000 \mod 7 = 10^5 \mod 7 \\
= (10 \mod 7)^5 \mod 7 \\
= 3^5 \mod 7 \\
= ((9 \mod 7) \cdot (9 \mod 7) \cdot (3 \mod 7)) \mod 7 \\
= (2^2 \cdot 3) \mod 7 \\
= 12 \mod 7 \\
= 5
\]
A Modular Exponentiation Table for $d = 5$

<table>
<thead>
<tr>
<th>exp</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
A Modular Exponentiation Table for \(d = 6 \)

<table>
<thead>
<tr>
<th>exp</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Computing $2^{57} \mod 7$ – Method I

Preprocessing

\[
\begin{align*}
2^1 \mod 7 &= 2 \\
2^2 \mod 7 &= (2^1)^2 \mod 7 = 2^2 \mod 7 = 4 \\
2^4 \mod 7 &= (2^2)^2 \mod 7 = 4^2 \mod 7 = 2 \\
2^8 \mod 7 &= (2^4)^2 \mod 7 = 2^2 \mod 7 = 4 \\
2^{16} \mod 7 &= (2^8)^2 \mod 7 = 4^2 \mod 7 = 2 \\
2^{32} \mod 7 &= (2^{16})^2 \mod 7 = 2^2 \mod 7 = 4
\end{align*}
\]

Computation

\[
\begin{align*}
2^{57} \mod 7 &= (2^{32}2^{16}2^82^1) \mod 7 \\
&= (4 \cdot 2 \cdot 4 \cdot 2) \mod 7 \\
&= 64 \mod 7 \\
&= 1
\end{align*}
\]
Computing $2^{57} \mod 7$ – Method II

Preprocessing

$$2^3 \mod 7 = (8 \mod 7) = 1$$
$$2^6 \mod 7 = (64 \mod 7) = 1$$

Computation

$$2^{57} \mod 7 = 2^{6 \cdot 9 + 3} \mod 7$$
$$= \left(\left(2^6 \right)^9 \cdot 2^3 \right) \mod 7$$
$$= \left(\left((64 \mod 7)^9 \mod 7 \right) \right) \left(8 \mod 7 \right) \mod 7$$
$$= \left(\left((1^9) \mod 7 \right) \cdot 1 \right) \mod 7$$
$$= 1 \mod 7$$
$$= 1$$
Computing $3^{101} \mod 5$ – Method II

Preprocessing

$\quad (3^2 \mod 5) = (9 \mod 5) = -1$
$\quad (3^4 \mod 5) = (81 \mod 5) = 1$

First computation

$\quad 3^{101} \mod 5 = 3^{2 \cdot 50 + 1} \mod 5$
$\quad = ((3^2)^{50} \cdot 3) \mod 5$
$\quad = ((-1)^{50} \cdot 3) \mod 5$
$\quad = (1 \cdot 3) \mod 5 = 3$

Second computation

$\quad 3^{101} \mod 5 = 3^{4 \cdot 25 + 1} \mod 5$
$\quad = ((3^4)^{25} \cdot 3) \mod 5$
$\quad = ((1)^{25} \cdot 3) \mod 5$
$\quad = (1 \cdot 3) \mod 5 = 3$
Online Resources

Modular arithmetic

- Examples:
 https://youtu.be/2zEXtoQDpXY

- Modular exponentiation (first two examples):
 https://youtu.be/tTuWmcikE0Q

Applications

- The Lazy Mathematician:
 https://youtu.be/FdmApk9V2-w

- Ramanujan’s floor equation:
 https://www.youtube.com/watch?v=knZSeL2noKg
The Greatest Common Divisor (GCD)

Definition

- Let n and m be two positive integers and let g be the greatest positive integer that is a divisor of both of them.
- $g = \gcd(n, m)$ is the **Greatest Common Divisor** of n and m.

Examples

- $5 = \gcd(5, 15)$
- $6 = \gcd(12, 18)$
- $1 = \gcd(13, 21)$

Bounds

- **Lower bound:** 1 is a divisor of all integers, therefore $g \geq 1$
- **Upper bound:** An integer cannot be a divisor of a smaller integer, therefore $g \leq \min \{n, m\}$
The Largest Divisor Algorithm

Algorithm

- Let \(N = \{1 < n_1 < n_2 < \cdots < n_{r-2} < n\} \) be the set of all the \(r \geq 2 \) divisors of \(n \) including 1 and \(n \)
- Let \(M = \{1 < m_1 < m_2 < \cdots < m_{s-2} < m\} \) be the set of all the \(s \geq 2 \) divisors of \(m \) including 1 and \(m \)
- Let \(G = N \cap M \) be the intersection of \(N \) and \(M \) and let \(g \) be the largest number in \(G \)
- Then \(g = \gcd(n, m) \)

Proof

- All the positive integers (including 1) that are divisors of both \(n \) and \(m \) are in \(G \)
- Therefore, by definition, \(g = \gcd(n, m) \)
Examples

Example I

- **Input:** $n = 372$ and $m = 138$
- $N = \{1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372\}$
- $M = \{1, 2, 3, 6, 23, 46, 69, 138\}$
- $G = \{1, 2, 3, 6\}$
- **Output:** $\gcd(372, 138) = 6$

Example II

- **Input:** $n = 480$ and $m = 360$
- $N = \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 480\}$
- $M = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360\}$
- $G = \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120\}$
- **Output:** $\gcd(480, 360) = 120$
The Common Prime Factors Algorithm

Algorithm

- Let \(n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} \) be the prime factorization of \(n \)
- Let \(m = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s} \) be the prime factorization of \(m \)
- Let \(G = \{g_1, g_2, \ldots, g_t\} = \{p_1, p_2, \ldots, p_r\} \cap \{q_1, q_2, \ldots, q_s\} \)
- If \(G \) is empty then \(\gcd(n, m) = 1 \)
- Otherwise:
 - For all \(1 \leq i \leq t \) such that \(g_i = p_j = q_k \) set \(h_i = \min \{a_j, b_k\} \)
 - Then \(\gcd(n, m) = g_1^{h_1} g_2^{h_2} \cdots g_t^{h_t} \)

Proof outline

- Assume that \(g^h \) is a divisor of \(\gcd(n, m) \) for a prime \(g \) and \(h \geq 1 \)
- Then \(g = p_j \) and \(g = q_k \) for some \(1 \leq j \leq r \) and \(1 \leq k \leq s \)
- Also, \(h \leq a_j \) and \(h \leq b_k \)
- Therefore, \(g_1^{h_1} g_2^{h_2} \cdots g_t^{h_t} \) is the prime factorization of \(\gcd(n, m) \)
Examples

Example I

- **Input:** $n = 372$ and $m = 138$
- $372 = 2^2 \cdot 3^1 \cdot 31^1$
- $138 = 2^1 \cdot 3^1 \cdot 23^1$
- $G = \{2, 3\}$
- **Output:** $\text{gcd}(372, 138) = 2^1 \cdot 3^1 = 6$

Example II

- **Input:** $n = 480$ and $m = 360$
- $480 = 2^5 \cdot 3^1 \cdot 5^1$
- $360 = 2^3 \cdot 3^2 \cdot 5^1$
- $G = \{2, 3, 5\}$
- **Output:** $\text{gcd}(480, 360) = 2^3 \cdot 3^1 \cdot 5^1 = 120$
The Euclidean Algorithm

Idea and proof outline

- **Idea:** \(\gcd(n, m) = \gcd(m, (n \mod m)) \) for \(n > m \)
- **Proof outline:** If \(d \) is a divisor of both \(n \) and \(m \) then it is a divisor of \((n \mod m) \)

Algorithm

- \(\gcd(n, m) \) (* \(n \geq m \) *)

 if \((n \mod m) = 0 \)

 then return \(m \)

 else return \(\gcd(m, (n \mod m)) \)

An online example

- https://youtu.be/klTIrnovoEE
Example

- **Input:** $n = 372$ and $m = 138$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>372</td>
<td>138</td>
</tr>
<tr>
<td>138</td>
<td>96</td>
</tr>
<tr>
<td>96</td>
<td>42</td>
</tr>
<tr>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

- **Output:** $\gcd(372, 138) = 6$
Example

- **Input:** \(n = 21 \) and \(m = 13 \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(m)</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Output:** \(\gcd(21, 13) = 1 \)
The Extended Euclidean Algorithm

Bézout’s identity

- Let $g = \gcd(n, m)$ for two positive integers n and m
- There exist integers x and y such that $xn + ym = g$
- All the integers that can be expressed as $zn + wm$ for two integers z and w are all the multiples of g

Algorithm’s idea

- Run the Euclidean Algorithm to find $\gcd(n, m)$
- Find x and y by following the algorithm in a reverse order
Example

Compute \(6 = \gcd(372, 138)\)

\[
\begin{align*}
372 &= 2 \cdot 138 + 96 \\
138 &= 1 \cdot 96 + 42 \\
96 &= 2 \cdot 42 + 12 \\
42 &= 3 \cdot 12 + 6 \\
12 &= 2 \cdot 6
\end{align*}
\]

Compute \(6 = (-10 \cdot 372) + (27 \cdot 138)\)

\[
\begin{align*}
6 &= (1 \cdot 42) - (3 \cdot 96 - 2 \cdot 42) \\
 &= (-3 \cdot 96) + 7(138 - 96) \\
 &= (7 \cdot 138) - 10(372 - 2 \cdot 138)
\end{align*}
\]
Computing the Modular Inverse

Bézout’s identity for relatively prime integers

- Let \(\gcd(n, d) = 1 \) for two positive integers \(n \) and \(d \)
- There exist integers \(x \) and \(y \) such that \(xn + yd = 1 \)

For relatively prime \(n \) and \(d \), find the inverse of \(n \) modulo \(d \)

- Equivalently, find \(m \) such that \((mn \mod d) = 1\)
- Set \(m = x \) in the above \(xn + yd = 1 \) Bézout’s identity
- Therefore, \(mn + yd = 1 \)

\[
\begin{align*}
mn & = 1 - yd \\
(mn \mod d) & = (1 \mod d) - (yd \mod d) = 1
\end{align*}
\]

- \(m = n^{-1} \) is the inverse of \(n \) modulo \(d \)
Example

Find the inverse of 11 modulo 17

- Using the extended Euclidean algorithm find
 \[14 \cdot 11 - 9 \cdot 17 = 1 \]

- Equivalently,
 \[
 (14 \cdot 11) \mod 17 = 154 \mod 17 \\
 = (9 \cdot 17 + 1) \mod 17 \\
 = 1
 \]

- Therefore 14 is the inverse of 11 modulo 17

Online example

- https://youtu.be/mgvA3z-vOzc
The Least Common Multiple (LCM)

Definition
- Let \(n \) and \(m \) be two positive integers and let \(\ell \) be the least positive integer that is a multiple of both of them
- \(\ell = \text{lcm}(n, m) \) is the Least Common Multiple of \(n \) and \(m \)

Examples
- \(15 = \text{lcm}(5, 15) \)
- \(36 = \text{lcm}(12, 18) \)
- \(273 = \text{lcm}(13, 21) \)

Bounds
- **Upper bound:** \(nm \) is a multiple of both \(n \) and \(m \), therefore \(\ell \leq nm \)
- **Lower bound:** An integer cannot be a multiple of a larger integer, therefore \(\ell \geq \max \{n, m\} \)
The Smallest Multiple Algorithm

Algorithm

- Initially $h = n$ and $k = m$
- While $h \neq k$
 - While $h < k$ set $h = h + n$
 - While $k < h$ set $k = k + m$
- Return $\text{lcm}(n, m) = h = k$

Proof outline

- Let $\ell = \text{lcm}(n, m)$
- By definition, any multiple $h < \ell$ of n is different than any multiple $k < \ell$ of m
- Eventually, $h = \ell$ and $k = \ell$ and the algorithm returns ℓ
Examples

Example I

- **Input:** $n = 48$ and $m = 36$
- $h = 48, 96, 144$
- $k = 36, 72, 108, 144$
- **Output:** $\text{lcm}(48, 36) = 144$

Example II

- **Input:** $n = 126$ and $m = 60$
- $h = 126, 252, 378, 504, 630, 756, 882, 1008, 1134, 1260$
- $k = 60, 120, 180, \ldots, 600, 660, \ldots, 1140, 1200, 1260$
- **Output:** $\text{lcm}(126, 60) = 1260$
The Factorization Algorithm

Algorithm
- Let $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ be the prime factorization of n
- Let $m = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$ be the prime factorization of m
- Let $L = \{\ell_1, \ell_2, \ldots, \ell_w\} = \{p_1, p_2, \ldots, p_r\} \cup \{q_1, q_2, \ldots, q_s\}$
- For all $1 \leq i \leq w$:
 - If $\ell_i = p_j$ for some $1 \leq j \leq r$, set $f_i = a_j$
 - If $\ell_i = q_k$ for some $1 \leq k \leq s$, set $f_i = b_k$
 - If $\ell_i = p_j = q_k$ for some $1 \leq j \leq r$ and $1 \leq k \leq s$, set $f_i = \max\{a_j, b_k\}$
- Then $\text{lcm}(n, m) = \ell_1^{f_1} \ell_2^{f_2} \cdots \ell_w^{f_w}$

Proof outline
- Assume that ℓ^f is a divisor of $\text{lcm}(n, m)$ for a prime ℓ and $f \geq 1$
- If $\ell = p_j$ for some $1 \leq j \leq r$ then $f \geq a_j$
- If $\ell = q_k$ for some $1 \leq k \leq s$ then $f \geq b_k$
- Therefore, $\ell_1^{f_1} \ell_2^{f_2} \cdots \ell_w^{f_w}$ is the prime factorization of $\text{lcm}(n, m)$
Examples

Example I

- **Input:** $n = 48$ and $m = 36$
- $48 = 2^4 \cdot 3^1$
- $36 = 2^2 \cdot 3^2$
- $L = \{2, 3\}$
- **Output:** $\text{lcm}(48, 36) = 2^4 \cdot 3^2 = 16 \cdot 9 = 144$

Example II

- **Input:** $n = 126$ and $m = 60$
- $126 = 2^1 \cdot 3^2 \cdot 7^1$
- $60 = 2^2 \cdot 3^1 \cdot 5^1$
- $L = \{2, 3, 5, 7\}$
- **Output:** $\text{lcm}(126, 60) = 2^2 \cdot 3^2 \cdot 5^1 \cdot 7^1 = 4 \cdot 9 \cdot 5 \cdot 7 = 1260$
The GCD and the LCM

Theorem

- \(n \cdot m = \gcd(n, m) \cdot \lcm(n, m) \) for any positive integers \(n \) and \(m \)

A special case

- \(\lcm(n, m) = n \cdot m \) for any relatively prime positive integers \(n \) and \(m \)

Examples

- \(75 = 5 \cdot 15 = \gcd(5, 15) \cdot \lcm(5, 15) \)
- \(216 = 12 \cdot 18 = 6 \cdot 36 = \gcd(12, 18) \cdot \lcm(12, 18) \)
- \(273 = 13 \cdot 21 = 1 \cdot 273 = \gcd(13, 21) \cdot \lcm(13, 21) \)

The Euclidean algorithm to compute \(\lcm(n, m) \)

- Run the Euclidean algorithm to compute \(\gcd(n, m) \)
- Return \(\lcm(n, m) = (n \cdot m) / \gcd(n, m) \)
Proof Idea and Outline

Proof idea

- $|N| + |M| = |N \cap M| + |N \cup M|$ for two sets N and M:
 - N is the multi-set of the prime factors of n
 - M is the multi-set of the prime factors of m
 - $N \cap M$ is the multi-set of the prime factors of $\gcd(n, m)$
 - $N \cup M$ is the multi-set of the prime factors of $\lcm(n, m)$

Proof outline

- Every prime factor of the product $n \cdot m$ that is a prime factor of both n and m is a prime factor of both $\gcd(n, m)$ and $\lcm(n, m)$
- Every prime factor of the product that is a prime factor of only n or only m is a prime factor of $\lcm(n, m)$ but is not a prime factor of $\gcd(n, m)$
GCD and LCM For More Than Two Integers

Recursive Computation

- Let \(n_1, n_2, \ldots, n_k \) be \(k \) positive integers
- \(\gcd(n_1, n_2, \ldots, n_k) = \gcd(n_1, \gcd(n_2, n_3, \ldots, n_k)) \)
- \(\text{lcm}(n_1, n_2, \ldots, n_k) = \text{lcm}(n_1, \text{lcm}(n_2, n_3, \ldots, n_k)) \)

Example

\[
\begin{align*}
\gcd(36, 60, 90) &= \gcd(36, \gcd(60, 90)) = \gcd(36, 30) = 6 \\
\text{lcm}(36, 60, 90) &= \text{lcm}(36, \text{lcm}(60, 90)) = \text{lcm}(36, 180) = 180
\end{align*}
\]

Remark

- It is not always true that
 \(\gcd(n_1, n_2, \ldots, n_k) \cdot \text{lcm}(n_1, n_2, \ldots, n_k) = n_1 n_2 \cdots n_k \)
- **Example:** \(\gcd(36, 60, 90) \cdot \text{lcm}(36, 60, 90) = 6 \cdot 180 = 1080 \) but \(36 \cdot 60 \cdot 90 = 194400 \)
The Efficiency of the gcd and lcm Algorithms

The gcd algorithm

- The largest divisor and the common factors algorithms are not efficient. Their running times depend on the values of n and m
- The Euclidean algorithm is very efficient. Its running time depends on the values of $\log(n)$ and $\log(m)$
- This is an exponential improvement!

The lcm algorithm

- The smallest multiple and the factorization algorithms are not efficient. Their running times depend on the values of n and m
- The Euclidean algorithm is very efficient. Its running time depends on the values of $\log(n)$ and $\log(m)$
- This is an exponential improvement!
Solving Modular Equations

Problem
- Let $0 < d_1 < d_2 < \cdots < d_k$ be k integers and let $0 \leq r < d_1$
- Find the smallest $n > r$ such that $n \mod d_i = r$ for all $1 \leq i \leq k$

Solution
- $n = \text{lcm}(d_1, d_2, \ldots, d_k) + r$
- Trivial solution: $n = r$ without the constraint $n > r$
- All solutions: $q \cdot \text{lcm}(d_1, d_2, \ldots, d_k) + r$ for any integer $q \geq 0$

Proof outline
- Suppose $m \mod d_i = r$ for all $1 \leq i \leq k$
- Then d_i is a divisor of $m - r$ for all $1 \leq i \leq k$
- Therefore, $\text{lcm}(d_1, d_2, \ldots, d_k)$ is a divisor of $m - r$
- As a result, $m = q \cdot \text{lcm}(d_1, d_2, \ldots, d_k) + r$
Example

Equations

\[n \mod 4 = 2 \]
\[n \mod 6 = 2 \]
\[n \mod 9 = 2 \]

Solution

- \(\text{lcm}(4, 6, 9) = 36 \)
- \(n = \text{lcm}(4, 6, 9) + 2 = 38 \)

Verification

- \(38 = 9 \cdot 4 + 2 \quad \Rightarrow \quad (38 \mod 4) = 2 \)
- \(38 = 6 \cdot 6 + 2 \quad \Rightarrow \quad (38 \mod 6) = 2 \)
- \(38 = 4 \cdot 9 + 2 \quad \Rightarrow \quad (38 \mod 9) = 2 \)
The Chinese Remainder Theorem

Theorem
- Let \(d_1, d_2, \ldots, d_k\) be \(k\) pairwise relatively prime positive integers
 - \(\gcd(d_i, d_j) = 1\) for all \(1 \leq i \neq j \leq k\)
- Let \(0 \leq r_i < d_i\) for all \(1 \leq i \leq k\)
- There exists a unique positive integer \(n < d_1d_2\cdots d_k\) such that \(n \mod d_i = r_i\) for all \(1 \leq i \leq k\)

Example
- \(n = 53\) is the only positive integer less than \(105 = 3 \cdot 5 \cdot 7\) such that
 - \(n \mod 3 = 2\)
 - \(n \mod 5 = 3\)
 - \(n \mod 7 = 4\)

An online example
- https://youtu.be/ru7mWZJlRQg
Fermat’s Little Theorem

Theorem

- For any prime p that is not a divisor of an integer $n > 0$:

 \[p \mid (n^{p-1} - 1) \quad n^{p-1} \equiv 1 \pmod{p} \]

- For any prime p and any integer $n > 0$:

 \[p \mid (n^p - n) \quad n^p \equiv n \pmod{p} \]

Examples

- $p = 5$ and $n = 3$ \(\implies\) $3^4 - 1 = 81 - 1 = 80 = 16 \cdot 5$
- $p = 3$ and $n = 5$ \(\implies\) $5^2 - 1 = 25 - 1 = 24 = 8 \cdot 3$
- $p = 3$ and $n = 6$ \(\implies\) $6^2 - 1 = 36 - 1 = 35 = 11 \cdot 3 + 2$
- $p = 3$ and $n = 6$ \(\implies\) $6^3 - 6 = 216 - 6 = 210 = 70 \cdot 3$

Story

- https://youtu.be/OoQ16YCYksw
More Examples

\(p = 5 \)

- \(3^4 \mod 5 = 81 \mod 5 = 1 \)
- \(7^4 \mod 5 = (7 \mod 5)^4 \mod 5 = 2^4 \mod 5 = 16 \mod 5 = 1 \)
- \(9^4 \mod 5 = (9 \mod 5)^4 \mod 5 = (-1)^4 \mod 5 = 1 \mod 5 = 1 \)
- \(10^4 \mod 5 = 10000 \mod 5 = 0 \neq 1 \)

\(p = 6 \)

- \(3^5 \mod 6 = 243 \mod 6 = 3 \neq 1 \)
- \(7^5 \mod 6 = (7 \mod 6)^5 \mod 6 = 1^5 \mod 6 = 1 \mod 6 = 1 \)
- \(11^5 \mod 6 = (11 \mod 6)^5 \mod 6 = (-1)^5 \mod 6 = -1 \mod 6 \neq 1 \)

\(p = 9 \)

- \(11^8 \mod 9 = (11 \mod 9)^8 \mod 9 = 2^8 \mod 9 = 256 \mod 9 = 4 \neq 1 \)
Exponentiation Modulo Primes

Example I

\[11^{48} \mod 17 = (11^{16})^3 \mod 17 \]
\[= (11^{16} \mod 17)^3 \mod 17 \]
\[= 1^3 \mod 17 \]
\[= 1 \]

Example II

\[57^{38} \mod 13 = (57 \mod 13)^{38} \mod 13 \]
\[= 5^{3 \cdot 12 + 2} \mod 13 \]
\[= ((5^{12} \mod 13)^3 \cdot (5^2 \mod 13)) \mod 13 \]
\[= (1^3 \cdot 12) \mod 13 \]
\[= 12 \]

An online resource

https://youtu.be/oT7kRlh1nVQ
Euler’s Totient Function

Definition

For a positive integer n, the Euler’s totient function $\varphi(n)$ is the number of positive integers smaller than n that are relatively prime to n

$\varphi(n)$ is the number of integers $k\ (1 \leq k \leq n)$ for which $\gcd(n, k) = 1$

Examples

$\varphi(4) = 2$ because only $\{1, 3\}$ are relatively prime to 4

$\varphi(6) = 2$ because only $\{1, 5\}$ are relatively prime to 6

$\varphi(7) = 6$ because $\{1, 2, 3, 4, 5, 6\}$ are all relatively prime to 7

$\varphi(8) = 4$ because only $\{1, 3, 5, 7\}$ are relatively prime to 8

$\varphi(9) = 6$ because only $\{1, 2, 4, 5, 7, 8\}$ are relatively prime to 9
Euler’s Totient Function

Proposition

For any prime p

$$\varphi(p) = p - 1$$

Proof

By definition, for a prime p, all the numbers $1, 2, \ldots, p - 1$ are relatively prime to p

Examples

- The 4 integers in the set $\{1, 2, 3, 4\}$ are relatively prime to 5 and $\varphi(5) = 5 - 1 = 4$
- The 6 integers in the set $\{1, 2, 3, 4, 5, 6\}$ are relatively prime to 7 and $\varphi(7) = 7 - 1 = 6$
Euler’s Totient Function

Proposition

For any positive integer k and a prime p

$$
\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)
$$

Proof outline

- Only multiples of p (including p^k) are not relatively prime to p^k
- There are $p^{k-1} = p^k / p$ positive multiples of p: $p, 2p, \ldots, p^{k-1}p$
- Therefore, $\varphi(p^k) = p^k - p^{k-1}$

Example

- $\{1, 3, 5, 7, 9, 11, 13, 15\}$ are relatively prime to 16
- $\varphi(16) = \varphi(2^4) = 2^4 - 2^3 = 16 - 8 = 8$
Euler’s Totient Function

Proposition
- For any relatively prime positive integers n and m,

$$
\varphi(nm) = \varphi(n)\varphi(m)
$$

Proof
- Based on the Chinese Remainder Theorem

Example
- \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\} are relatively prime to 36
- \(\varphi(36) = \varphi(4 \cdot 9) = \varphi(4)\varphi(9) = 2 \cdot 6 = 12\)
Euler’s Totient Function

Corollary

For any two different primes p and q,

$$\varphi(pq) = (p - 1)(q - 1)$$

Proof

Implied by the two propositions for the φ value of a prime and the φ value of a product

$$\varphi(pq) = \varphi(p)\varphi(q) = (p - 1)(q - 1)$$

Example

$\{1, 2, 4, 7, 8, 11, 13, 14\}$ are relatively prime to 15

$$\varphi(15) = \varphi(3 \cdot 5) = \varphi(3)\varphi(5) = (3 - 1)(5 - 1) = 2 \cdot 4 = 8$$
Euler’s Totient Function

Theorem

- For a positive integer n

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

where the product is over the distinct prime factors of n

Example

- The distinct prime factors of 36 are 2 and 3. Therefore

$$\varphi(36) = 36 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 36 \cdot \frac{1}{2} \cdot \frac{2}{3} = 12$$

Online resources

- https://youtu.be/qa_hksAzpSg
- https://youtu.be/EcAT1XmHouk

Amotz Bar-Noy (Brooklyn College)
Euler’s Totient Function

Proof

Let \(n = p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h} \) be the prime factorization of \(n \)

\[
\varphi(n) = \varphi(p_1^{k_1}) \varphi(p_2^{k_2}) \cdots \varphi(p_h^{k_h})
\]

\[
= p_1^{k_1} \left(1 - \frac{1}{p_1}\right) p_2^{k_2} \left(1 - \frac{1}{p_2}\right) \cdots p_h^{k_h} \left(1 - \frac{1}{p_h}\right)
\]

\[
= (p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h}) \left(\left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_h}\right)\right)
\]

\[
= n \prod_{i=1}^{h} \left(1 - \frac{1}{p_i}\right)
\]

\[
= n \prod_{p|n} \left(1 - \frac{1}{p}\right)
\]
Euler’s Theorem

Theorem

For any relatively prime positive integers n and m

$$m^\varphi(n) \equiv 1 \pmod{n}$$

The Fermat’s Little Theorem special case

- Let n be a prime number and therefore $\varphi(n) = n - 1$
- By the Euler’s Theorem

$$m^\varphi(n) = m^{n-1} \equiv 1 \pmod{n}$$
Examples

- \(\phi(8) = 4\) because only \(\{1, 3, 5, 7\}\) are relatively prime to 8

 \[
 \begin{align*}
 1^4 &= 1 = 0 \cdot 8 + 1 \\
 3^4 &= 81 = 10 \cdot 8 + 1 \\
 5^4 &= 625 = 78 \cdot 8 + 1 \\
 7^4 &= 2401 = 300 \cdot 8 + 1
 \end{align*}
 \]

- \(\phi(12) = 4\) because only \(\{1, 5, 7, 11\}\) are relatively prime to 12

 \[
 \begin{align*}
 1^4 &= 1 = 0 \cdot 12 + 1 \\
 5^4 &= 625 = 52 \cdot 12 + 1 \\
 7^4 &= 2401 = 200 \cdot 12 + 1 \\
 11^4 &= 14641 = 1220 \cdot 12 + 1
 \end{align*}
 \]
Computing $17^{802} \mod 24$

Preprocessing

- $\gcd(17, 24) = 1$
- $\varphi(24) = \varphi(3 \cdot 2^3) = \varphi(3)\varphi(2^3) = 2(2^3 - 2^2) = 2 \cdot 4 = 8$
- Therefore, Euler’s Theorem implies that $17^8 \mod 24 = 1$

Computation

$$17^{802} \mod 24 = (17^2 \cdot 17^{800}) \mod 24$$
$$= ((17^2 \mod 24) \cdot ((17^8)^{100} \mod 24)) \mod 24$$
$$= ((289 \mod 24) \cdot ((17^8) \mod 24)^{100}) \mod 24$$
$$= (1 \cdot 1^{100}) \mod 24$$
$$= 1$$

An online resource

https://youtu.be/FHkS3ydTM3M
Journey into cryptography: Modern Cryptography

All videos

- https://www.khanacademy.org/computing/computer-science/cryptography#modern-crypt

List of videos

- Public key cryptography: What is it? https://youtu.be/Msqqp09R5Hc
- The discrete logarithm problem: https://youtu.be/SL7J8hPKEWY
- Diffie-hellman key exchange: https://youtu.be/M-0qt6tdHzk
- RSA encryption: Step 1: https://youtu.be/EPXilYOa71c
- RSA encryption: Step 2: https://youtu.be/IY8BXNFGnyI
- RSA encryption: Step 3: https://youtu.be/cJvoi0LuutQ
- RSA encryption: Step 4: https://youtu.be/UjIPMJd6Xks
More about Public Key Systems and RSA

How Encryption Works

https://youtu.be/IBocnou79yI

RSA Code

https://youtu.be/t5lACDDoQTk
Magic with Modular Arithmetic

Chinese Remainder Theorem and Cards

https://www.youtube.com/watch?v=l9dXo5f3zDc