Graphs

Amotz Bar-Noy

CUNY
A **graph** is a collection of **edges** and **vertices**. Each edge connects two vertices.

The Petersen graph
Different Drawings of the Same Graph

- Graph 1
- Graph 2
- Graph 3
Graph Isomorphism

Definition

- Graph G_1 and graph G_2 are **isomorphic** if there is a one-one correspondence between their vertices such that the number of edges joining any two vertices of G_1 is equal to the number of edges joining the corresponding vertices of G_2.

Example

\[
\begin{align*}
a & \leftrightarrow A & b & \leftrightarrow B & c & \leftrightarrow C & d & \leftrightarrow D & e & \leftrightarrow E & f & \leftrightarrow F \\
A & - & D & - & B & - & E & - & C & - & F & -
\end{align*}
\]
Online Resources

Get started with graph theory

Learn graph theory interactively
- https://d3gt.com/index.html

A short introduction

- **Definitions and Euler Tour:**
 - https://youtu.be/2QKjZb9ZKYg?list=PLMyAzUai9V3ox_LDw154GRkNxovx6NqQX (8:52 min)

- **Trees and Traversals:**
 - https://youtu.be/7OztK4CnsrM?list=PLMyAzUai9V3ox_LDw154GRkNxovx6NqQX (7:13 min)
Online graph editor

- https://csacademy.com/app/graph_editor/

Graphs and Degree Sequences Interface

- Simple version: http://www.kevlewis.com/projects/GraphApplicationV_0_0/index2.html
- Latest version: http://www.kevlewis.com/projects/GraphApplication/
Sarada Herke: A Graph Theory Online Course

FAQ
https://www.youtube.com/playlist?list=PLGxuz-nmY1Q0AiikIbmTuj4Lf4QPc017G

A comprehensive introductory course with 66 video lectures
- Part I: https://www.youtube.com/playlist?list=PLGxuz-nmY1Q0iIOriTXMEoGoybUC3Jmrn
- Part II: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOWyn01-O9SBboVvjSSrmmXF
- Part III: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOwe-FPnmy8RA4nzpsygCPx
- Part IV: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOXFjanEQY4WHnPJnAYQSqP
- Part V: https://www.youtube.com/playlist?list=PLGxuz-nmY1QPth2TGh3MTTkrmYjKtlTwk
- Part VI: https://www.youtube.com/playlist?list=PLGxuz-nmY1Qmbct_HCagSmWEmuHvubXT
- Part VII: https://www.youtube.com/playlist?list=PLGxuz-nmY1QNCcfVYLs9G4dtFJDFUuo5A
- Part VIII: https://www.youtube.com/playlist?list=PLGxuz-nmY1QnbShqPRrMA8cQAac45L03
- Part IX: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOnbToEreNmISXm808M5Ba
- Part X: https://www.youtube.com/playlist?list=PLGxuz-nmY1QPgIHbqWtgD-F7NnJuqs4fH
- Part XI: https://www.youtube.com/playlist?list=PLGxuz-nmY1QMO2wRhUhV_g6AN3vLN_4X7

Fun with graphs
https://www.youtube.com/playlist?list=PLGxuz-nmY1QLIFc5nRy7pdHdK3vj
MIT Discrete Math lectures: Graph Theory

Part I: Graph Theory and Coloring

Part II: Matching Problems
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/lecture-7-matching-problems/

Part III: Minimum Spanning Trees

Part IV: Communication Networks

Part V: Graph Theory III
Graph Theory Algorithms by a Google engineer

Description
https://www.freecodecamp.org/news/learn-graph-theory-algorithms-from-a-google-engineer/

Outline
- How to store and represent graphs on a computer.
- Common graph theory problems seen in the wild.
- Famous graph traversal algorithms (DFS & BFS).
- Dijkstra’s shortest path algorithm (both the lazy and eager version).
- What a topological sort is, how to find one, and places it’s used.
- How to detect negative cycles and find shortest paths with the Bellman-Ford and Floyd-Warshall algorithms.
- How to discover bridges and articulation points in graphs.
- How to detect strongly connected components with Tarjan’s algorithm.
- How to solve the traveling salesman problem with dynamic programming.

Video Lecture
Famous Graph Problems

The seven bridges of Königsberg
- https://www.youtube.com/watch?v=nZwSo4vfw6c (4:39 min)

The four color map problem
- https://www.youtube.com/watch?v=ANY7X-_wpNs (2:36 min)
- https://www.youtube.com/watch?v=NgbK43jB4rQ (14:17 min)

The Traveling Salesperson Problem
- https://www.youtube.com/watch?v=l8KBKItQ3T4 (1:15 min)
- https://www.youtube.com/watch?v=SC5CX8drAtU (2:22 min)
Notations

- $G = (V, E)$ – graph.
- $V = \{1, \ldots, n\}$ – set of vertices.
- $E \subseteq V \times V$ – set of edges.
- $e = (u, v) \in E$ – edge.
- $n = |V| = V$ – number of vertices.
- $m = |E| = E$ – number of edges.
Directed and Undirected Graphs

Undirected graphs
- The edge (u, v) is the same as the edge (v, u).

Directed graphs (D-graphs)
- The edge $(u \rightarrow v)$ is not the same as the edge $(v \rightarrow u)$.

The underlying undirected graph of a directed graph
- The edge $(u \rightarrow v)$ becomes (u, v).
Undirected Edges

- Vertices u and v are the **endpoints** of the edge (u, v).
- Edge (u, v) is **incident** with vertices u and v.
- Vertices u and v are **neighbors** if edge (u, v) exists.
 - u is **adjacent** to v and v is **adjacent** to u.
- Vertex u has **degree** d if it has d neighbors.
- Edge (v, v) is a **(self) loop** edge.
- Edges $e_1 = (u, v)$ and $e_2 = (u, v)$ are **parallel** edges.
Directed Edges

- Vertex u is the **origin (initial)** and vertex v is the **destination (terminal)** of the directed edge $(u \rightarrow v)$.

- Vertex v is the **neighbor** of vertex u if the directed edge $(u \rightarrow v)$ exists (but u is not a neighbor of v).
 - v is **adjacent** to u (but u is not adjacent to v).

- Vertex u has
 - **out-degree** d if it has d neighbors.
 - **in-degree** d if it is the neighbor of d vertices.
Weighted Graphs

Definition
- In **Weighted graphs** there exists a weight function: \(w : E \rightarrow \mathbb{R} \).
 - Weights could be negative.

The triangle inequality
- For any three edges \((u, v), (v, w),\) and \((w, u)\), the weight function obeys the inequality:
 \[
 w(u, w) \leq w(u, v) + w(v, w)
 \]
- Example: distances in the plane.
Simple Graphs

Definition
- A **simple** directed or undirected graph is a graph with no parallel edges and no self loops.
- In a simple directed graph both edges: \((u \rightarrow v)\) and \((v \rightarrow u)\) could exist (they are not parallel edges).

Number of edges in simple graphs
- A simple undirected graph has at most \(m = \binom{n}{2}\) edges.
- A simple directed graph has at most \(m = n(n - 1)\) edges.
- A **dense** simple (directed or undirected) graph has “many” edges: \(m = \Theta(n^2)\).
- A **sparse** (shallow) simple (directed or undirected) graph has “few” edges: \(m = \Theta(n)\).
Definition

In a **labelled** graph each vertex has a unique label (ID).

- Usually the labels are: $1, \ldots, n$.

Observation

- There are $2^{\binom{n}{2}}$ **non-isomorphic** labelled graphs with n vertices. Because each possible edge exists or does not exist.
The 8 Labelled Graphs with $n = 3$ vertices.
The 4 Unlabelled Graphs with $n = 3$ Vertices

1. Three isolated vertices
2. Two vertices connected
3. Three vertices forming a triangle
4. Three vertices forming a triangle with an additional edge
Paths and Cycles

Paths
- An undirected or directed path $P = \langle v_0, v_1, \ldots, v_k \rangle$ of length k is an ordered list of vertices such that (v_i, v_{i+1}) or $(v_i \rightarrow v_{i+1})$ exists for $0 \leq i \leq k - 1$ and all the edges are different.

Cycles
- An undirected or directed cycle $C = \langle v_0, v_1, \ldots, v_{k-1}, v_0 \rangle$ of length k is an undirected or directed path that starts and ends with the same vertex.

Simple paths
- In a simple path, directed or undirected, all the vertices are different.

Simple cycles
- In a simple cycle, directed or undirected, all the vertices except $v_0 = v_k$ are different.
Special Paths and Cycles

Euler paths
- An undirected or directed Euler path (tour) is a path that traverses all the edges.

Euler cycles
- An undirected or directed Euler cycle (circuit) is a cycle that traverses all the edges.

Hamiltonian paths
- An undirected or directed Hamiltonian path (tour) is a simple path that visits all the vertices.

Hamiltonian cycles
- An undirected or directed Hamiltonian cycle (circuit) is a simple cycle that visits all the vertices.
Connected Graphs

Connectivity

In a **connected** undirected graph there exists a path between any pair of vertices.

Observation

In a connected undirected graph there are at least \(m = n - 1 \) edges.

Connected components

A connected sub-graph \(G' \) is a **connected component** of an undirected graph \(G \) if there is no connected sub-graph \(G'' \) of \(G \) such that \(G' \) is also a subgraph of \(G'' \).

Corollary

A connected graph has exactly one connected component.
Strongly Connected Directed Graphs

Strong Connectivity
- In a strongly connected directed graph there exists a directed path from \(u \) to \(v \) for any pair of vertices \(u \) and \(v \).

Observation
- In a simple strongly connected directed graph there are at least \(m = n \) edges.

Strongly connected components
- A strongly connected directed sub-graph \(G' \) is a strongly connected component of a directed graph \(G \) if there is no strongly connected directed sub-graph \(G'' \) of \(G \) such that \(G' \) is also a subgraph of \(G'' \).

Corollary
- A strongly connected graph has exactly one strongly connected component.
The WEB Graph

Definition

- In the WEB graph, every page is a vertex and a hyper-link from page p to page q is modeled by the directed edge $(p \rightarrow q)$.

Broder et. al (Graph Structure of the Web, 2000) Examined a large web graph (200M pages, 1.5B links)
Counting Edges

Theorem

Let G be a simple undirected graph with n vertices and k connected components then:

$$n - k \leq m \leq \frac{(n - k)(n - k + 1)}{2}$$

Corollary

A simple undirected graph with n vertices is connected if it has m edges for:

$$m > \frac{(n - 2)(n - 3)}{2}$$
Assumptions

- Unless stated otherwise, **usually** a graph is:
 - Simple.
 - Undirected.
 - Unlabelled.
 - Unweighted.
 - Connected.
Forests and Trees

Forests
- Graphs with no cycles.

Trees
- Connected graphs with no cycles.

Trees and Forests
- A tree is a connected forest.
- Each connected component of a forest is a tree.
Theorem

- An undirected and simple graph is a tree if:
 - It is connected and has no cycles.
 - It is connected and has exactly \(m = n - 1 \) edges.
 - It has no cycles and has exactly \(m = n - 1 \) edges.
 - It is connected and deleting any edge disconnects it.
 - Any two vertices are connected by exactly one path.
 - It has no cycles and any new edge forms one cycle.

Corollary

- The number of edges in a forest with \(n \) vertices and \(k \) trees is \(m = n - k \).
Counting Labelled Trees

Theorem

There are n^{n-2} distinct labelled n vertices trees.

All labelled with four vertices

![Diagrams showing labelled trees with four vertices]
Counting Unlabelled Trees

Open problem

What is the number of non-isomorphic unlabelled trees with n vertices?

The two unlabelled trees with four vertices

The three unlabelled trees with five vertices
Null Graphs

Definition

- **Null graphs** are graphs with no edges.
- In null graphs \(m = 0 \).
- The null graph with \(n \) vertices is denoted by \(N_n \).

The null graph with six vertices

![Null graph with six vertices diagram]
Complete Graphs

Definition

- **Complete graphs** (cliques) are graphs with all possible edges.
- In complete graphs $m = \binom{n}{2} = \frac{n(n-1)}{2}$.
- The complete graph with n vertices is denoted by K_n.

The complete graph with six vertices

![Complete graph with six vertices]
Cycles

Definition

- **Cycles (rings)** are connected graphs in which all vertices have degree 2 ($n \geq 3$).
- In cycles $m = n$.
- The cycle with n vertices is denoted by C_n.

The cycle graph with six vertices
Definition

- **Paths** are cycles with one edge removed (paths are trees).
- In paths $m = n - 1$.
- The path with n vertices is denoted by P_n.

The path graph with six vertices
Stars

Definition
- **Stars** are graphs with one root and \(n - 1 \) leaves (stars are trees).
- In stars \(m = n - 1 \).
- The star with \(n \) vertices is denoted by \(S_n \).

The star graph with six vertices

![Star graph with six vertices](image-url)
Wheels

Definition
- **Wheels** are stars in which all the \(n - 1 \) leaves form a cycle.
- In wheels \(m = 2n - 2 \) for \(n \geq 4 \).
- The wheel with \(n \) vertices is denoted by \(W_n \).

The wheel graph with six vertices
Bipartite Graphs

Definition
- The vertices of a **bipartite graph** \(G = (V, E) \) are partitioned into two disjoint sets \(V = X \cup Y \).
- Each edge in \(E \) is incident to one vertex from \(X \) and one vertex from \(Y \).

Observation
- A graph is bipartite iff each cycle in the graph is of even length.

A bipartite graphs with ten vertices
Definition

- A complete bipartite graph $K_{x,y}$ is a bipartite graph in which the set X has x vertices, the set Y has y vertices, and all possible $x \cdot y$ edges exist.

A complete bipartite graph with $x = 4$ and $y = 5$ vertices

![Diagram of a complete bipartite graph with 4 vertices in set X and 5 vertices in set Y, with all possible edges connecting them.](image-url)
Hyper-Cubes

Definition
- The **Hyper-Cube** graph H_k has $n = 2^k$ vertices representing all the 2^k binary sequences of length k.
- Two vertices in H_k are adjacent if their corresponding sequences differ by exactly one bit.

A hyper-cube graph with eight vertices

```
000 - 001 - 010 - 011
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Hyper-Cubes

Observation
- Hyper-Cubes are bipartite graphs.

Proof
- X The vertices with even number of 1 in their binary representation.
- Y The vertices with odd number of 1 in their binary representation.
- Any edge connects two vertices that differ by one bit and therefore one is from the set Y and one is from the set Y.
Planar Graphs

Definition
- **Planar graphs** are graphs that can be drawn on the plane such that edges do not cross each other.

Theorem
- A graph is planar **iff** it does not have sub-graphs homeomorphic to K_5 and $K_{3,3}$.

Theorem
- Every planar graph can be drawn with straight lines.
Non-Planar Graphs

\[K_5 \]: the complete graph with 5 vertices.

\[K_{3,3} \]: the complete \(\langle 3, 3 \rangle \) bipartite graph.
Δ-regular Graphs

Definition
- In **Δ-regular graphs** the degree of each vertex is exactly \(\Delta \).
- In \(\Delta \)-regular graphs \(m = \frac{\Delta \cdot n}{2} \).
- The Petersen Graph is a 3-regular graph.

The Petersen graph

![Image of the Petersen Graph]
Definition I

The random graph $R(n, p)$ has n vertices and each of the possible $\frac{n(n-1)}{2}$ edges exists with probability $0 \leq p \leq 1$.

Observation

The expected number of edges in $R(n, p)$ is $p \frac{n(n-1)}{2}$.

Definition II

The random graph $R(n, m)$ is randomly selected with a uniform distribution over all graphs with n vertices and m edges.

Remarks

Both definitions share many properties but they are not equivalent.
There are many other random graphs models.
Social Graphs

Definition

- A social graph contains all the friendship relations (edges) among n people (vertices).

Propositions

- In any group of $n \geq 2$ people, there are 2 people with the same number of friends in the group.

- There exists a group of 5 people for which no 3 are mutual friends and no 3 are mutual strangers.

- Every group of 6 people contains either three mutual friends or three mutual strangers.
Data structure for Graphs

Goal

- Represent the vertices and edges of the graph efficiently.

Representations

- **Adjacency lists**: $\Theta(n + m)$ memory size.
- **Adjacency matrix**: $\Theta(n^2)$ memory size.
- **Incident matrix**: $\Theta(n \cdot m)$ memory size.
The Adjacency Lists Representation

Definition

- Each vertex is associated with a linked list consisting of all of its neighbors.
- In a directed graph there are two lists: an incoming list and an outgoing list.
- In a weighted graph each record in the list has an additional field for the weight.

$\Theta(n + m)$-memory

- Undirected graphs: $\sum_v \text{Deg}(v) = 2m$
- Directed graphs: $\sum_v \text{OutDeg}(v) = \sum_v \text{InDeg}(v) = m$
Example – Adjacency Lists

\[
\begin{align*}
A & \rightarrow (B, C, D) \\
B & \rightarrow (A, C, E) \\
C & \rightarrow (A, B, F) \\
D & \rightarrow (A, E, F) \\
E & \rightarrow (B, D, F) \\
F & \rightarrow (C, D, E)
\end{align*}
\]
The Adjacency Matrix Representation

Definition

- A matrix A of size $n \times n$:
 - $A[u, v] = 1$ if (u, v) or $(u \rightarrow v)$ is an edge.
 - $A[u, v] = 0$ if (u, v) or $(u \rightarrow v)$ is not an edge.

- In simple graphs: $A[u, u] = 0$
- In weighted graphs: $A[u, v] = w(u, v)$

$\Theta(n^2)$-memory

- Independent of m that could be $o(n^2)$ and even $O(n)$.

Amotz Bar-Noy (CUNY)
Example – Adjacency Matrix

A	B	C	D	E	F
A | 0 | 1 | 1 | 1 | 0 | 0
B | 1 | 0 | 1 | 0 | 1 | 0
C | 1 | 1 | 0 | 0 | 0 | 1
D | 1 | 0 | 0 | 0 | 1 | 1
E | 0 | 1 | 0 | 1 | 0 | 1
F | 0 | 0 | 1 | 1 | 1 | 0
The Incident Matrix Representation

Definition

- A matrix A of size $n \times m$:
 - $A[v, e] = 1$ if undirected edge e is incident with v.
 - Otherwise $A[v, e] = 0$.

- In simple graphs all the columns are different and each contains exactly two non-zero entries.

- In weighted undirected graphs: $A[v, e] = w(e)$ if edge e is incident with vertex v.

$\Theta(n \cdot m)$-memory

- The memory size depends on the number of edges.
Example – Incident Matrix

<table>
<thead>
<tr>
<th></th>
<th>(A, B)</th>
<th>(A, C)</th>
<th>(A, D)</th>
<th>(B, C)</th>
<th>(B, E)</th>
<th>(C, F)</th>
<th>(D, E)</th>
<th>(D, F)</th>
<th>(E, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Which Data Structure to Choose?

Adjacency matrices
- Simpler to implement and maintain.
- Efficient for dense graphs.

Adjacency lists
- Efficient for sparse graphs.
- Used by algorithms whose complexity depends on m.

Incident matrices
- Useful for hypergraphs in which hyperedges may contain more than two vertices.
- Not efficient for graph algorithms.
Graphic Sequences

Degrees
- The **degree** d_v of vertex v in graph G is the number of neighbors of v in G.

The Hand-Shaking Lemma
- **Lemma**: $\sum_{i=1}^{n} d_i = 2m$.
- **Proof outline**: Each edge “contributes” exactly 2 to the sum.
- **Corollary**: The number of odd degree vertices is even.

Graphic sequences
- The **degree sequence** of G is $S = (d_1, \ldots, d_n)$.
- A sequence $S = (d_1, \ldots, d_n)$ is **graphic** if there exists a graph with n vertices whose degree sequence is S.
Testing if Sequences are Graphic

Theorem

For \(n \geq 1 \), a sequence \((d_1 \geq d_2 \cdots \geq d_n)\) of \(n \) non-negative integers is **graphic** if the following two conditions hold:

1. \(d_1 + d_2 + \cdots + d_n \) is even.
2. For \(1 \leq k \leq n \):

 \[
 \sum_{i=1}^{k} d_i \leq k(k - 1) + \sum_{i=k+1}^{n} \min\{d_i, k\}.
 \]

Complexity

A **dynamic programming** based algorithm can check all the \(n \) inequalities with complexity \(\Theta(n) \).
Graphic Sequence for Trees

Theorem

For \(n \geq 2 \), a sequence \((d_1, d_2, \ldots, d_n)\) of \(n \) positive integers is a degree sequence of a tree if and only if

\[
\sum_{i=1}^{n} d_i = 2n - 2
\]

Proof

\[\Rightarrow\] A tree has \(n - 1 \) edges. By the **Hand Shaking Lemma** the sum of the degrees in a tree is \(2n - 2 \).

\[\Leftarrow\] By induction on \(n \).

Online resource

https://www.youtube.com/watch?v=cCG4_nj9TgM
Examples of Non-Graphic Sequences

\((3, 3, 3, 3, 3, 3)\)
- Since the sum of the degrees in any graph must be even.
- There is no 7-vertex 3-regular graph.

\((5, 5, 4, 4, 0)\)
- Since there are 5 vertices and therefore the maximum degree could be at most 4.
- The maximum degree in a graph with \(n\) vertices is \(n - 1\).

\((3, 2, 1, 0)\)
- Since there is a vertex with degree 3 and only two additional vertices with a positive degree.
Observation I

- The sequence \((0,0,\ldots,0)\) of length \(n\) is graphic. Since it represents the null graph \(N_n\).

Observation II

- In a graphic sequence \(S = (d_1 \geq \cdots \geq d_n)\) \(d_1 \leq n - 1\).

Observation III

- \(d_{d_1+1} > 0\) in a graphic sequence of a non-null graph \(S = (d_1 \geq \cdots \geq d_n)\).
Transformation

Definition

- Let $S = (d_1 \geq \cdots \geq d_n)$.
- Then $f(S) = (d_2 - 1 \geq \cdots \geq d_{d_1+1} - 1, d_{d_1+2} \geq \cdots \geq d_n)$.

Examples

- $S = (5, 4, 3, 3, 2, 1, 1, 1) \implies f(S) = (3, 2, 2, 1, 0, 1, 1)$
- $S = (6, 6, 6, 3, 3, 2, 2, 2) \implies f(S) = (5, 5, 2, 2, 1, 1, 2, 2)$

Remarks

- The transformation can be applied only if Observations II and Observation III hold.
- The transformation does not change S if Observation I hold.
Graphic Sequences

Theorem

$S = (d_1 \geq \cdots \geq d_n)$ is graphic iff $f(S)$ is graphic.

Proof

\Leftarrow To get a graphic representation for S, add a vertex of degree d_1 to the graphic representation of $f(S)$ and connect this vertex to all vertices whose degrees in $f(S)$ are smaller by 1 than those in S.

\Rightarrow To get a graphic representation for $f(S)$, omit a vertex of degree d_1 from the graphic representation of S. Make sure (how?) that this vertex is connected to the vertices whose degrees are d_2, \ldots, d_{d_1+1}.

Online resources

- https://www.youtube.com/watch?v=aNK04ttWmcU
- https://www.youtube.com/watch?v=iQJ1PFZ4gh0
Algorithm to Test if a Sequence is Graphic

Algorithm

\[
\text{Graphic}(S = (d_1 \geq \cdots \geq d_n \geq 0))
\]

- case \(d_1 = 0 \) return (TRUE)
- case \(d_1 \geq n \) return (FALSE)
- case \(d_{d_1+1} = 0 \) return (FALSE)
- otherwise return Graphic(Sort(f(S)))

Correctness

- **Observation I** implies the first case.
- **Observation II** implies the second case.
- **Observation III** implies the third case.
- The **theorem** implies the recursion.
Implementing the Algorithm

Data structure
- Maintain n sets of vertices $B_{n-1}, B_{n-2}, \ldots, B_1, B_0$.
- B_i contains all the vertices that need i more neighbors.
- Initially v_i is placed in bin B_{d_i}.
- In each round,
 - Let the degree of the highest degree vertex u be d.
 - Let u_1, u_2, \ldots, u_d be the new neighbors of u whose degrees are c_1, c_2, \ldots, c_d respectively.
 - Move u from B_d to B_0.
 - For all $1 \leq j \leq d$, move u_j from B_{c_j} to B_{c_j-1}.

Complexity
- $\Theta(m)$ for all rounds since $\sum_{i=1}^{n} d_i = 2m$.
Construction outline

- Call the vertices of the graphic sequence \(v_1, v_2, \ldots, v_n \) where the degree of \(v_i \) is \(d_i \).
- Initially there are no edges in the graph.
- In each round,
 - Let the degree of the highest degree vertex \(v_i = u \) be \(d \).
 - Let \(v_{i_1} = u_1, v_{i_2} = u_2, \ldots, v_{i_d} = u_d \) be the new neighbors of \(v_i = u \).
 - For all \(1 \leq j \leq d \), add the edge \((v_i, v_{i_j}) = (u, u_j)\) to the graph.

Complexity

- \(\Theta(m) \) for all rounds since \(\sum_{i=1}^{n} d_i = 2m \).
Example

- Initial sequence: \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\)
After Round 1: \((A, B, C, D, E, F, G, H) = (0, 3, 2, 1, 1, 2, 2, 1)\)
After Round 2: \((A, B, C, D, E, F, G, H) = (0, 0, 1, 1, 1, 1, 1, 1)\)
After Rounds 3,4,5: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0)\)
Example

The realized graph: \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\)
A More Generalized Algorithm

- Call the vertex that is selected in each round the **pivot** vertex.

- The algorithm works for any vertex being the **pivot** vertex as long as it is connected to the highest degree vertices.

- Different selections of **pivot** vertices may lead to different non-isomorphic realizations.

- However, not all the graphs can be realized by this algorithm.
Initial sequence: \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\)
After Round 1: \((A, B, C, D, E, F, G, H) = (3, 4, 3, 2, 2, 2, 2, 0)\)
After Round 2: \((A, B, C, D, E, F, G, H) = (2, 3, 3, 2, 2, 2, 0, 0)\)
Example

After Round 3: \((A, B, C, D, E, F, G, H) = (2, 2, 2, 2, 2, 0, 0, 0)\)
After Round 4: \((A, B, C, D, E, F, G, H) = (1, 1, 2, 2, 0, 0, 0, 0)\)
Example

After Round 5: \((A, B, C, D, E, F, G, H) = (0, 1, 1, 0, 0, 0, 0, 0)\)
After Round 6: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0)\)
Example

The realized graph: \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\)
The Two Realizations Are Not Isomorphic