Discrete Structures: Induction

Amotz Bar-Noy

Department of Computer and Information Science
Brooklyn College
The Principle of Induction

The principle

Let P_n be a statement about all positive integers $n = 1, 2, 3, \ldots$

If the following hold:

- **Induction base:** P_1 is true
- **Inductive step:** For all integers $k \geq 1$, if P_k is true then P_{k+1} is true

Then P_n is true for all integers $n \geq 1$

The assumption “P_k is true” is the induction hypothesis

Cartoons

Why Induction Works?

“Justification” with the Well-Ordering Principle

- Assume that there exists \(j \geq 2 \) such that \(P_j \) is false
- Let \(S \) be the set of all integers \(h \geq 1 \) for which \(P_h \) is false
 * \(S \) is a non empty set that can contain infinite number of integers
- Let \(k + 1 \) be the minimum integer in \(S \)
 * The Well-Ordering Principle
- \(k \geq 1 \) since by the induction base \(P_1 \) is true
- \(P_k \) is true and \(P_{k+1} \) is false by the minimality of \(k + 1 \)
- A contradiction to the inductive step
Generalizations

Other Induction Bases
- For any $m \geq 0$ the induction base could be P_m instead of P_1
- In this case, the induction is applied to $n = m, m + 1, \ldots$

Strong Induction
- The induction base is that P_1, \ldots, P_m are true for some $m \geq 1$
- The induction hypothesis is that P_1, P_2, \ldots, P_k are true for some $k \geq m$
- The inductive step is that P_{k+1} is implied by a non-empty subset of statements from the set $\{P_1, P_2, \ldots, P_k\}$
The induction variable

- The **inductive step** could be that P_{n+1} is implied by P_n and then P_n is the **induction hypothesis**

- The **inductive step** could be that P_n is implied by P_{n-1} and then P_{n-1} is the **induction hypothesis**
Some Online Resources

- An introductory video in less than 4 minutes:
 https://www.youtube.com/watch?v=bePpPFos0kE

- Introduction in 15 minutes:
 https://www.youtube.com/watch?v=ruBnYcLzVlU

- Sum of the first n integers in 7 minutes:
 https://www.youtube.com/watch?v=dMn5w4_ztSw&feature=youtu.be

- Sum of the first n odd integers in 10 minutes:
 https://www.youtube.com/watch?v=twA6vZgX_U4

- Sum of first n integers of the form $5k - 1$ in 6 minutes:
 https://www.youtube.com/watch?v=IFqna5F0kW8

- $6^n + 4$ is divisible by 5 in 6 minutes:
 https://youtu.be/MpjgLf7lfRA

- Introduction in 8 minutes (from 11:25 to 20:04):
 https://youtu.be/0UgID8C9RvE?list=PLZzHxk_TPOStgPtqRZ6KzmkUQBQ8TSWVX
Sum of First n Positive Integers

An identity

$$\sum_{i=1}^{n} i = 1 + 2 + \cdots + (n-1) + n = \frac{n(n+1)}{2}$$

An equivalent identity

$$\sum_{i=1}^{n-1} i = 1 + 2 + \cdots + (n-2) + (n-1) = \frac{(n-1)n}{2}$$
Correctness for Small n

\[
\begin{align*}
1 & = 1 = \frac{1 \cdot 2}{2} \\
1 + 2 & = 3 = \frac{2 \cdot 3}{2} \\
1 + 2 + 3 & = 6 = \frac{3 \cdot 4}{2} \\
1 + 2 + 3 + 4 & = 10 = \frac{4 \cdot 5}{2} \\
1 + 2 + 3 + 4 + 5 & = 15 = \frac{5 \cdot 6}{2} \\
1 + 2 + 3 + 4 + 5 + 6 & = 21 = \frac{6 \cdot 7}{2} \\
1 + 2 + 3 + 4 + 5 + 6 + 7 & = 28 = \frac{7 \cdot 8}{2} \\
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 & = 36 = \frac{8 \cdot 9}{2}
\end{align*}
\]
Proof By Induction

Notations

- \(L(n) = \sum_{i=1}^{n} i = 1 + 2 + \cdots + (n-1) + n \)
- \(R(n) = \frac{n(n+1)}{2} \)

The induction base: \(n = 1 \)

- \(L(1) = R(1) \), because \(L(1) = 1 \) and \(R(1) = \frac{1 \cdot 2}{2} = 1 \)

The induction hypothesis: \(L(k) = R(k) \) for \(k \geq 1 \)

- \(\sum_{i=1}^{k} i = 1 + 2 + \cdots + (k-1) + k = \frac{k(k+1)}{2} \)
The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = 1 + 2 + \cdots + k + (k + 1)
\]

\[
= L(k) + (k + 1)
\]

\[
= R(k) + (k + 1)
\]

\[
= \frac{k(k + 1)}{2} + (k + 1)
\]

\[
= \frac{k(k + 1)}{2} + \frac{2(k + 1)}{2}
\]

\[
= \frac{k(k + 1) + 2(k + 1)}{2}
\]

\[
= \frac{(k + 2)(k + 1)}{2}
\]

\[
= \frac{(k + 1)((k + 1) + 1)}{2}
\]

\[
= R(k + 1)
\]
Another Proof

Idea

Prove that $2L(n) = 2R(n)$ implying $L(n) = R(n)$

Example

\[
2L(4) = 2(1 + 2 + 3 + 4) \\
= (1 + 2 + 3 + 4) + (4 + 3 + 2 + 1) \\
= (1 + 4) + (2 + 3) + (3 + 2) + (4 + 1) \\
= 4 \cdot 5 \\
= 2 \frac{4 \cdot 5}{2} \\
= 2R(4)
\]
Another Proof

The General Case

\[2L(n) = (1 + 2 + \cdots + (n - 1) + n) + (n + (n - 1) + \cdots + 2 + 1) \]
\[= (1 + n) + (2 + (n - 1)) + \cdots + ((n - 1) + 2) + (n + 1) \]
\[= (n + 1) + (n + 1) + \cdots + (n + 1) + (n + 1) \]
\[= n(n + 1) \]
\[= \frac{n(n + 1)}{\frac{2}{2}} \]
\[= 2R(n) \]

A proof without words

https://i.stack.imgur.com/yerzW.png
Sum of First n Even Positive Integers

Identity

\[
\sum_{i=1}^{n} 2i = 2 + 4 + \cdots + 2(n - 1) + 2n = n(n + 1)
\]

Proof

\[
\sum_{i=1}^{n} 2i = 2 + 4 + \cdots + 2(n - 1) + 2n
\]

\[
= 2(1 + 2 + \cdots + (n - 1) + n)
\]

\[
= 2 \cdot \frac{n(n + 1)}{2}
\]

\[
= n(n + 1)
\]
Sum of First n Odd Positive Integers

Identity

$$\sum_{i=1}^{n} (2i - 1) = 1 + 3 + 5 + \cdots + (2n - 3) + (2n - 1) = n^2$$

Correctness for small n

\[
\begin{align*}
1 & = 1 = 1^2 \\
1 + 3 &= 4 = 2^2 \\
1 + 3 + 5 &= 9 = 3^2 \\
1 + 3 + 5 + 7 &= 16 = 4^2 \\
1 + 3 + 5 + 7 + 9 &= 25 = 5^2 \\
1 + 3 + 5 + 7 + 9 + 11 &= 36 = 6^2 \\
1 + 3 + 5 + 7 + 9 + 11 + 13 &= 49 = 7^2 \\
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 &= 64 = 8^2 \\
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 &= 81 = 9^2 \\
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 &= 100 = 10^2
\end{align*}
\]
Sum of First n Odd Positive Integers

Identity

$$\sum_{i=1}^{n}(2i - 1) = 1 + 3 + \cdots + (2n - 3) + (2n - 1) = n^2$$

Proof by reduction

$$\sum_{i=1}^{n}(2i - 1) = \sum_{i=1}^{n}(2i) - \sum_{i=1}^{n}1$$

$$= n(n + 1) - n$$

$$= n^2 + n - n$$

$$= n^2$$

Visual proofs

- https://www.youtube.com/watch?v=IJ0EQCkJCTc
- https://www.youtube.com/watch?v=ZeEOgbLo0Rg

Amotz Bar-Noy (Brooklyn College) Discrete Structures 15 / 80
Proof By Induction

Notations

- $L(n) = \sum_{i=1}^{n} (2i - 1) = 1 + 3 + \cdots + (2n - 3) + (2n - 1)$
- $R(n) = n^2$

The induction base: $n = 1$

- $L(1) = R(1)$, because $L(1) = 1$ and $R(1) = 1^2 = 1$

The induction hypothesis: $L(k) = R(k)$ for $k \geq 1$

$$\sum_{i=1}^{k} (2i - 1) = 1 + 3 + \cdots + (2k - 3) + (2k - 1) = k^2$$
Proof By Induction

The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = 1 + 3 + \cdots + (2k - 1) + (2k + 1) \\
= L(k) + (2k + 1) \\
= R(k) + (2k + 1) \\
= k^2 + (2k + 1) \\
= (k + 1)^2 \\
= R(k + 1)
\]
Sum of the First $2n$ Odd Positive Integers

Identity

The sum of the first n odd integers is $1/3$ the sum of the next n odd integers:

$$\frac{\sum_{i=1}^{n} (2i - 1)}{\sum_{i=n+1}^{2n} (2i - 1)} = \frac{1 + 3 + \cdots + (2n - 1)}{(2n + 1) + (2n + 3) + \cdots + (4n - 1)} = \frac{1}{3}$$

Proof

$$\sum_{i=n+1}^{2n} (2i - 1) = \sum_{i=1}^{2n} (2i - 1) - \sum_{i=1}^{n} (2i - 1)$$

$$= (2n)^2 - n^2 = 4n^2 - n^2 = 3n^2$$

$$= 3 \sum_{i=1}^{n} (2i - 1)$$

Visual Proofs

https://youtu.be/MmOTqrtbtFQ?list=PLZh9gzIvXQUubr38YfIlul9j7_54hXZy_

https://www.youtube.com/watch?v=fTBvVeURb3Q
Arithmetic Progressions

Definition

- A sequence a_1, a_2, \ldots, a_n is an arithmetic progression if $a_i - a_{i-1} = d$ for all $2 \leq i \leq n$ for some real number d

Key observations

- Observation 1: $a_i = a_1 + (i - 1)d$ for $1 \leq i \leq n$
- Observation 2: $a_i = a_n - (n - i)d$ for $1 \leq i \leq n$

Theorem

\[
\sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_{n-1} + a_n = \frac{n(a_1 + a_n)}{2}
\]

\[
\frac{\sum_{i=1}^{n} a_i}{n} = \frac{a_1 + a_2 + \cdots + a_{n-1} + a_n}{n} = \frac{a_1 + a_n}{2}
\]
Arithmetic Progressions

The theorem in words version I
- The sum of all the n numbers in an arithmetic progression of length n is the average between the first and the last numbers multiplied by n.

The theorem in words version II
- The average of all the n numbers in an arithmetic progression of length n is the average between the first and the last numbers.

Remark
- The definition and the theorem work for real numbers and negative numbers. For simplicity we assume that all the numbers in the sequence are positive integers.
Arithmetic Progressions: $a_1 = 5$, $d = 3$, and $n = 11$

Sequence

$5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35$

Observation 1

$a_4 = a_1 + (4 - 1)d = 5 + 3 \cdot 3 = 5 + 9 = 14$

Observation 2

$a_7 = a_{11} - (11 - 7)d = 35 - 4 \cdot 3 = 35 - 12 = 23$

Sum of all numbers

$5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 + 35 = 220$

Average of all numbers

$220/11 = 20$

Average of the first and the last numbers

$(5 + 35)/2 = 40/2 = 20$
ArithmeticProgressions

Theorem

\[
\sum_{i=1}^{n} a_i = \frac{n(a_1 + a_n)}{2}
\]

Notation

- Define \(S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n \)

Direct proof

\[
\begin{align*}
S_n &= a_1 + (a_1 + d) + (a_1 + 2d) + \cdots + (a_1 + (n-2)d) + (a_1 + (n-1)d) \\
S_n &= a_n + (a_n - d) + (a_n - 2d) + \cdots + (a_n - (n-2)d) + (a_n - (n-1)d) \\
2S_n &= n(a_1 + a_n) \\
S_n &= \frac{n(a_1 + a_n)}{2}
\end{align*}
\]
Proof By Induction

Notations

- $L(n) = \sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_{n-1} + a_n$
- $R(n) = \frac{n(a_1 + a_n)}{2}$

The induction base: $n = 1$

- $L(1) = R(1)$, because $L(1) = a_1$ and $R(1) = \frac{1 \cdot (a_1 + a_1)}{2} = a_1$

The induction hypothesis: $L(k) = R(k)$ for $k \geq 1$

$$\sum_{i=1}^{k} a_i = \frac{k(a_1 + a_k)}{2}$$
Proof By Induction

The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = a_1 + a_2 + \cdots + a_k + a_{k+1}
\]
\[
= L(k) + a_{k+1}
\]
\[
= R(k) + a_{k+1}
\]
\[
= \frac{k(a_1 + a_k)}{2} + a_{k+1}
\]
\[
= \frac{ka_1}{2} + \frac{ka_k}{2} + \frac{2a_{k+1}}{2}
\]
\[
= \frac{ka_1 + a_k}{2} + \frac{2a_{k+1} + (k - 1)a_k}{2}
\]
\[
= \frac{ka_1 + (a_1 + (k - 1)d)}{2} + \frac{2a_{k+1} + (k - 1)(a_{k+1} - d)}{2}
\]
\[
= \frac{(k + 1)a_1 + (k - 1)d}{2} + \frac{(k + 1)a_{k+1} - (k - 1)d}{2}
\]
\[
= \frac{(k + 1)(a_1 + a_{k+1})}{2}
\]
\[
= R(k + 1)
\]
Theorem

- $2^n > n^2$ for any integer $n \geq 5$

Why $n \geq 5$?

- $2^1 = 2 > 1 = 1^2$
- $2^2 = 4 = 4 = 2^2$
- $2^3 = 8 < 9 = 3^2$
- $2^4 = 16 = 16 = 4^2$
- $2^5 = 32 > 25 = 5^2$
- $2^6 = 64 > 36 = 6^2$
- $2^7 = 128 > 49 = 7^2$
$2^n > n^2$: Proof By Induction

The induction base for $n = 5$

- $2^5 = 32 > 25 = 5^2$

The induction hypothesis for $k \geq 5$

- Assume that $2^k > k^2$

The inductive step for $k \geq 5$: prove that $2^{k+1} > (k + 1)^2$

\[
\begin{align*}
2^{k+1} &= 2 \cdot 2^k \\
> 2k^2 &\quad (* \text{ the induction hypothesis } *) \\
= k^2 + k^2 \\
> k^2 + 3k &\quad (* \text{ because } k > 3 \times *) \\
> k^2 + 2k + 1 &\quad (* \text{ because } k > 1 \times *) \\
= (k + 1)^2
\end{align*}
\]
A Divisibility Theorem: Proof By Induction

Theorem

\[n(n + 1)(n + 2) \text{ is divisible by } 6 \text{ for } n \geq 1 \]

**The induction base: for } n = 1, 2, 3, 4, 5\]

\[
\begin{align*}
1 \cdot 2 \cdot 3 &= 6 &= 1 \cdot 6 \\
2 \cdot 3 \cdot 4 &= 24 &= 4 \cdot 6 \\
3 \cdot 4 \cdot 5 &= 60 &= 10 \cdot 6 \\
4 \cdot 5 \cdot 6 &= 120 &= 20 \cdot 6 \\
5 \cdot 6 \cdot 7 &= 210 &= 35 \cdot 6
\end{align*}
\]

**The induction hypothesis for } k \geq 1\]

Assume that \(k(k + 1)(k + 2) \) is divisible by 6

That is, \(k(k + 1)(k + 2) = 6q \) for an integer \(q \)
The inductive step for $k \geq 1$

\[(k + 1)(k + 2)(k + 3) = k(k + 1)(k + 2) + 3(k + 1)(k + 2) \quad (\ast \text{algebra}\ast)\]
\[= 6q + 3(k + 1)(k + 2) \quad (\ast \text{induction hypothesis}\ast)\]
\[= 6q + 6\frac{(k + 1)(k + 2)}{2} \quad (\ast \text{algebra}\ast)\]
\[= 6q + 6p \quad (\ast \text{either } k + 1 \text{ or } k + 2 \text{ is even}\ast)\]
\[= 6(q + p) \quad (\ast \text{Q.E.D.}\ast)\]
Theorem

\[n(n+1)(n+2) \text{ is divisible by } 6 \text{ for } n \geq 1 \]

Proof

- \(n, n+1, \text{ and } n+2\) are three consecutive integers
- One of them must be divisible by 3
- One (could be the same integer) must be even and therefore is divisible by 2
- Therefore, the product of the three integers must be divisible by 6 = 3 \cdot 2
Another Divisibility Theorem

Theorem

- \(n(n + 1)(n + 2) \) is divisible by 24 for an even \(n \geq 2 \)

Small Values of \(n \)

\[
2 \cdot 3 \cdot 4 = 24 = 1 \cdot 24 \\
4 \cdot 5 \cdot 6 = 120 = 5 \cdot 24 \\
6 \cdot 7 \cdot 8 = 336 = 14 \cdot 24
\]

Proof

- \(n, n + 1, \) and \(n + 2 \) are three consecutive integers
- One of them must be divisible by 3
- \(n \) and \(n + 2 \) are two consecutive even integers
- One of them must be divisible by 4 while the other is divisible by 2
- Therefore, the product of the three integers must be divisible by 24 = 3 \cdot 4 \cdot 2
A Set of Size $n \geq 0$ Has 2^n Subsets

Proof

- By induction on the size of the set

The induction base for $n = 0$ and $n = 1$

- The only subset of the empty set is the empty set and $2^0 = 1$
- The empty set and the entire set are the only subsets of a set of size 1 and $2^1 = 2$.

The induction hypothesis for $k \geq 1$

- Any set of size k has 2^k subsets

Notations

- Let $S = \{s_1, s_2, \ldots, s_k, s_{k+1}\}$ be a set of size $k + 1$
- Let $S' = \{s_1, s_2, \ldots, s_k\}$ be the subset of S containing all of its members except s_{k+1}.
A Set of Size $n \geq 0$ Has 2^n Subsets

The inductive step for $k \geq 1$: prove that S has 2^{k+1} subsets

- By the induction hypothesis, S' has 2^k subsets all of them are also subsets of S
- Let R be a subset of S that is not a subset of S'
 * It follows that $s_{k+1} \in R$ and that $R' = R \setminus \{s_{k+1}\}$ is a subset of S'
- Let R' be a subset of S'
 * Then, $R = R' \cup \{s_{k+1}\}$ is a subset of S that is not a subset of S'

The above two arguments establishes a **one-to-one mapping** from the set of all the subsets that contain s_{k+1} to the set of all the subsets that do not contain s_{k+1}

- Therefore, there are also 2^k subsets of S that contain s_{k+1}
- Since a subset of S either contains s_{k+1} or does not contain s_{k+1}, it follows that the number of subsets of S is $2^k + 2^k = 2^{k+1}$
Example: \(S = \{C, R, B, G, M\} \)

Matching the 16 subsets without \(M \) to the 16 subsets with \(M \):

<table>
<thead>
<tr>
<th>Subset without (M)</th>
<th>Subset with (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>({M})</td>
</tr>
<tr>
<td>({C})</td>
<td>({C, M})</td>
</tr>
<tr>
<td>({R})</td>
<td>({R, M})</td>
</tr>
<tr>
<td>({B})</td>
<td>({B, M})</td>
</tr>
<tr>
<td>({G})</td>
<td>({G, M})</td>
</tr>
<tr>
<td>({C, R})</td>
<td>({C, R, M})</td>
</tr>
<tr>
<td>({C, B})</td>
<td>({C, B, M})</td>
</tr>
<tr>
<td>({C, G})</td>
<td>({C, G, M})</td>
</tr>
<tr>
<td>({R, B})</td>
<td>({R, B, M})</td>
</tr>
<tr>
<td>({R, G})</td>
<td>({R, G, M})</td>
</tr>
<tr>
<td>({B, G})</td>
<td>({B, G, M})</td>
</tr>
<tr>
<td>({C, R, B})</td>
<td>({C, R, B, M})</td>
</tr>
<tr>
<td>({C, R, G})</td>
<td>({C, R, G, M})</td>
</tr>
<tr>
<td>({C, B, G})</td>
<td>({C, B, G, M})</td>
</tr>
<tr>
<td>({R, B, G})</td>
<td>({R, B, G, M})</td>
</tr>
<tr>
<td>({C, R, B, G})</td>
<td>({C, R, B, G, M})</td>
</tr>
</tbody>
</table>
Geometric Progressions

Definition

- A sequence a_1, a_2, \ldots, a_n is a geometric progression with a common positive ratio $q > 0$ if $a_i = qa_{i-1}$ for all $2 \leq i \leq n$.

Simplifying assumptions

- Set $a_1 = q$ and as a result the sequence becomes q^1, q^2, \ldots, q^n.
- Add $a_0 = 1 = q^0$ to the beginning of the sequence and as a result the sequence becomes $q^0, q^1, q^2, \ldots, q^n$.

Theorem

For a real number $q > 0$ and $q \neq 1$

$$\sum_{i=0}^{n-1} q^i = 1 + q + \cdots + q^{n-2} + q^{n-1} = \frac{q^n - 1}{q - 1}$$
Proof By Induction

Notations

- \(L(n) = 1 + q + \cdots + q^{n-2} + q^{n-1} \)
- \(R(n) = \frac{q^{n-1}}{q-1} \)

The Induction base: \(n = 1 \)

- \(L(1) = R(1) \), because \(L(1) = 1 \) and \(R(1) = \frac{q^{1-1}}{q-1} = 1 \)

The induction hypothesis: \(L(k) = R(k) \) for \(k \geq 1 \)

\[
\sum_{i=0}^{k-1} q^i = 1 + q + \cdots + q^{k-2} + q^{k-1} = \frac{q^k - 1}{q - 1}
\]
The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = 1 + q + \cdots + q^{k-1} + q^k \\
= L(k) + q^k \\
= R(k) + q^k \\
= \frac{q^k - 1}{q - 1} + q^k \\
= \frac{(q^k - 1) + ((q - 1)q^k)}{q - 1} \\
= \frac{(q^k - 1) + (q^{k+1} - q^k)}{q - 1} \\
= \frac{q^{k+1} - 1}{q - 1} \\
= R(k + 1)
\]
Another proof

Theorem
For a real number $q > 0$ and $q \neq 1$

\[
\sum_{i=0}^{n-1} q^i = 1 + q + \cdots + q^{n-2} + q^{n-1} = \frac{q^n - 1}{q - 1}
\]

Proof

\[
(q - 1) \sum_{i=0}^{n-1} q^i = q \sum_{i=0}^{n-1} q^i - \sum_{i=0}^{n-1} q^i
\]

\[
= (q + q^2 + \cdots + q^{n-1} + q^n) - (1 + q + \cdots + q^{n-2} + q^{n-1})
\]

\[
= q^n - 1
\]
Corollary

For a real number $q > 0$ and $q \neq 1$

$$\sum_{i=1}^{n-1} q^i = q + \cdots + q^{n-2} + q^{n-1} = \frac{q^n - q}{q - 1}$$

Proof

$$\sum_{i=1}^{n-1} q^i = \sum_{i=0}^{n-1} q^i - 1$$

$$= \frac{q^n - 1}{q - 1} - \frac{q - 1}{q - 1}$$

$$= \frac{q^n - q}{q - 1}$$
Geometric Progressions with $q = 2$

Identity

\[
\sum_{i=0}^{n-1} 2^i = 1 + 2 + 4 + \cdots + 2^{n-1} = \frac{2^n - 1}{2 - 1} = 2^n - 1
\]

Small n

\[
\begin{align*}
1 &= 2^1 - 1 \\
1 + 2 &= 3 = 2^2 - 1 \\
1 + 2 + 4 &= 7 = 2^3 - 1 \\
1 + 2 + 4 + 8 &= 15 = 2^4 - 1 \\
1 + 2 + 4 + 8 + 16 &= 31 = 2^5 - 1 \\
1 + 2 + 4 + 8 + 16 + 32 &= 63 = 2^6 - 1
\end{align*}
\]
Geometric Progressions with $q = 3$

Identity

$$
\sum_{i=0}^{n-1} 3^i = 1 + 3 + 9 + \cdots + 3^{n-1}
$$

$$
= \frac{3^n - 1}{3 - 1} = \frac{3^n - 1}{2}
$$

Small n

$$
1 = 1 = \frac{3^1 - 1}{2} = \frac{3 - 1}{2}
$$

$$
1 + 3 = 4 = \frac{3^2 - 1}{2} = \frac{9 - 1}{2}
$$

$$
1 + 3 + 9 = 13 = \frac{3^3 - 1}{2} = \frac{27 - 1}{2}
$$

$$
1 + 3 + 9 + 27 = 40 = \frac{3^4 - 1}{2} = \frac{81 - 1}{2}
$$

$$
1 + 3 + 9 + 27 + 81 = 121 = \frac{3^5 - 1}{2} = \frac{243 - 1}{2}
$$
Geometric Progressions Visual Proofs

$q = 3$
- [Link](https://www.youtube.com/watch?v=9IAm75UY2U8)

$q = 4$
- [Link](https://www.youtube.com/watch?v=yTpzDEDP090&list=PLZh9gzIvXQUsgw8W5TUVtF0q4jEJ3iaw)

$q = 7$
- [Link](https://www.youtube.com/watch?v=1wIdJxSfuZ4&list=PLZh9gzIvXQUsgw8W5TUVtF0q4jEJ3iaw)

$q = 8$
- [Link](https://www.youtube.com/watch?v=vcO5pa7iZOU)

$q = 9$
- [Link](https://www.youtube.com/watch?v=Ch7GFdsc9pQ)
Geometric Progressions for Large q

First approximation: large q

\[
\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1} \\
= \frac{q^n}{q - 1} - \frac{1}{q - 1} \\
\approx \frac{q^n}{q - 1}
\]

Second approximation: very large q

\[
\sum_{i=0}^{n-1} q^i \approx \frac{q^n}{q - 1} \approx \frac{q^n}{q} = q^{n-1}
\]
Another Version of the Identity for the Sum

Theorem
For a real number $q > 0$ and $q \neq 1$

$$\sum_{i=0}^{n-1} q^i = 1 + q + \cdots + q^{n-1} = \frac{1 - q^n}{1 - q}$$

Proof

$$\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1}$$

$$= \frac{(-1)(q^n - 1)}{(-1)(q - 1)}$$

$$= \frac{1 - q^n}{1 - q}$$
Another Version of the Identity for the Sum

Corollary

For a real number $q > 0$ and $q \neq 1$

$$\sum_{i=1}^{n-1} q^i = q + q^2 + \cdots + q^{n-1} = \frac{q - q^n}{1 - q}$$

Proof

$$\sum_{i=1}^{n-1} q^i = \frac{q^n - q}{q - 1}$$

$$= \frac{(-1)(q^n - q)}{(-1)(q - 1)}$$

$$= \frac{q - q^n}{1 - q}$$
Which Identity To Use?

The two identities

\[\sum_{i=0}^{n-1} q^i = 1 + q + \cdots + q^{n-1} = \frac{q^n - 1}{q - 1} \]
(1)

\[\sum_{i=0}^{n-1} q^i = 1 + q + \cdots + q^{n-1} = \frac{1 - q^n}{1 - q} \]
(2)

Avoid negative numbers

- Use the first when \(q > 1 \) so both the numerator and the denominator are positive
- Use the second when \(q < 1 \) so both the numerator and the denominator are positive
Geometric Progressions with $q = \frac{1}{2}$

Identity

$$\sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^i = 1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{n-1}}$$

$$= \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}}$$

$$= 2 \left(1 - \left(\frac{1}{2}\right)^n\right) = 2 - \frac{1}{2^{n-1}}$$

Small n

$$1 = 2 - \frac{1}{1} = 1$$

$$1 + \frac{1}{2} = 2 - \frac{1}{2} = \frac{3}{2}$$

$$1 + \frac{1}{2} + \frac{1}{4} = 2 - \frac{1}{4} = \frac{7}{4}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 2 - \frac{1}{8} = \frac{15}{8}$$
Identity

\[\sum_{i=0}^{n-1} \left(\frac{2}{3}\right)^i = 1 + \frac{2}{3} + \frac{4}{9} + \cdots + \frac{2^{n-1}}{3^{n-1}}\]

\[= \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}}\]

\[= 3 \left(1 - \left(\frac{2}{3}\right)^n\right)\]

\[= 3 - \frac{2^n}{3^{n-1}}\]
Geometric Progressions with $q = \frac{k-1}{k}$

Identity

\[
\sum_{i=0}^{n-1} \left(\frac{k-1}{k} \right)^i = 1 + \frac{k-1}{k} + \frac{(k-1)^2}{k^2} + \cdots + \frac{(k-1)^{n-1}}{k^{n-1}}
\]

\[
= \frac{1 - \left(\frac{k-1}{k} \right)^n}{1 - \frac{k-1}{k}}
\]

\[
= k \left(1 - \left(\frac{k-1}{k} \right)^n \right)
\]

\[
= k - \frac{(k-1)^n}{k^{n-1}}
\]
Geometric Progressions with \(q = \frac{1}{2} \)

Identity

\[
\sum_{i=1}^{n-1} \left(\frac{1}{2} \right)^i = \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{n-1}}
\]

\[
= \frac{\frac{1}{2} - \left(\frac{1}{2} \right)^n}{1 - \frac{1}{2}}
\]

\[
= 2 \left(\frac{1}{2} - \left(\frac{1}{2} \right)^n \right) = 1 - \frac{1}{2^{n-1}}
\]

Small numbers

\[
\begin{align*}
\frac{1}{2} &= 1 - \frac{1}{2} = \frac{1}{2} \\
\frac{1}{2} + \frac{1}{4} &= 1 - \frac{1}{4} = \frac{3}{4} \\
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} &= 1 - \frac{1}{8} = \frac{7}{8} \\
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} &= 1 - \frac{1}{16} = \frac{15}{16}
\end{align*}
\]
Geometric Progressions with $q = \frac{1}{3}$

Identity

$$\sum_{i=1}^{n-1} \left(\frac{1}{3} \right)^i = \frac{1}{3} + \frac{1}{9} + \cdots + \frac{1}{3^{n-1}}$$

$$= \frac{\frac{1}{3} - \left(\frac{1}{3} \right)^n}{1 - \frac{1}{3}}$$

$$= \frac{3}{2} \left(\frac{1}{3} - \left(\frac{1}{3} \right)^n \right)$$

$$= \frac{1}{2} - \frac{1}{3^{n-1}}$$
Geometric Progressions with $q = \frac{1}{k}$

Identity

$$\sum_{i=1}^{n-1} \left(\frac{1}{k} \right)^i = \frac{1}{k} + \frac{1}{k^2} + \cdots + \frac{1}{k^{n-1}}$$

$$= \frac{1}{k} - \left(\frac{1}{k} \right)^n$$

$$= \frac{1}{1 - \frac{1}{k}}$$

$$= \frac{k}{k-1} \left(\frac{1}{k} - \left(\frac{1}{k} \right)^n \right)$$

$$= \frac{1}{k-1} - \frac{1}{k^{n-1}}$$
Infinite Geometric Progressions with \(0 < q < 1 \)

Theorem

\[
\sum_{i=0}^{\infty} q^i = 1 + q + q^2 + \cdots = \frac{1}{1 - q}
\]

\[
\sum_{i=1}^{\infty} q^i = q + q^2 + q^3 + \cdots = \frac{q}{1 - q}
\]

Proof sketch

- \(q^n \rightarrow 0 \) when \(n \rightarrow \infty \) and therefore \(q^\infty = 0 \)

\[
\sum_{i=0}^{\infty} q^i = \frac{1 - q^\infty}{1 - q} = \frac{1 - 0}{1 - q} = \frac{1}{1 - q}
\]

\[
\sum_{i=1}^{\infty} q^i = \frac{q - q^\infty}{1 - q} = \frac{q - 0}{1 - q} = \frac{q}{1 - q}
\]
Another proof

Theorem
For a real number $0 < q < 1$

$$
\sum_{i=0}^{\infty} q^i = 1 + q + q^2 + \cdots = \frac{1}{1 - q}
$$

Proof

$$
(1 - q) \sum_{i=0}^{\infty} q^i = \sum_{i=0}^{\infty} q^i - q \sum_{i=0}^{\infty} q^i
$$

$$
= (1 + q + q^2 + \cdots) - (q + q^2 + q^3 + \cdots)
$$

$$
= 1
$$

Application

https://www.youtube.com/watch?v=3cNdM7W0VlQ
Infinite Geometric Progressions with $q = \frac{k-1}{k}$

Small k

- \[\sum_{i=0}^{\infty} \left(\frac{1}{2} \right)^i = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = \frac{1}{1-\frac{1}{2}} = 2 \]
- \[\sum_{i=0}^{\infty} \left(\frac{2}{3} \right)^i = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \cdots = \frac{1}{1-\frac{2}{3}} = 3 \]
- \[\sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i = 1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots = \frac{1}{1-\frac{3}{4}} = 4 \]

The general case

\[
\sum_{i=0}^{\infty} \left(\frac{k-1}{k} \right)^i = 1 + \frac{k-1}{k} + \frac{(k-1)^2}{k^2} + \frac{(k-1)^3}{k^3} + \cdots
\]

\[
= \frac{1}{1 - \frac{k-1}{k}} = \frac{1}{\frac{1}{k}} = k
\]
Infinite Geometric Progressions with $q = \frac{1}{k}$

Small k

- $\sum_{i=1}^{\infty} \left(\frac{1}{2} \right)^i = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$
- $\sum_{i=1}^{\infty} \left(\frac{1}{3} \right)^i = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$
- $\sum_{i=1}^{\infty} \left(\frac{1}{4} \right)^i = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \cdots = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{1}{3}$
- $\sum_{i=1}^{\infty} \left(\frac{1}{5} \right)^i = \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \cdots = \frac{\frac{1}{5}}{1 - \frac{1}{5}} = \frac{1}{4}$
- $\sum_{i=1}^{\infty} \left(\frac{1}{6} \right)^i = \frac{1}{6} + \frac{1}{36} + \frac{1}{216} + \cdots = \frac{\frac{1}{6}}{1 - \frac{1}{6}} = \frac{1}{5}$

The general case

- $\sum_{i=1}^{\infty} \left(\frac{1}{k} \right)^i = \frac{1}{k} + \frac{1}{k^2} + \frac{1}{k^3} + \cdots = \frac{\frac{1}{k}}{1 - \frac{1}{k}} = \frac{1}{k-1}$
Infinite Geometric Progressions with $q = \frac{1}{k}$

Visual Proofs

- $q = \frac{1}{2}$: [Link](https://www.youtube.com/watch?v=saJJGN1sfn8)
- $q = \frac{1}{3}$:
 - [Link](https://www.youtube.com/watch?v=vfEDDI3vfHU)
 - [Link](https://www.youtube.com/watch?v=RmTzmNrqss)
- $q = \frac{1}{4}$: [Link](https://www.youtube.com/watch?v=8i1xj5ORwUw)
- $q = \frac{1}{5}$:
 - [Link](https://www.youtube.com/watch?v=yp7afEXYeC4)
 - [Link](https://www.youtube.com/watch?v=IguRXWNwrn8&t=47s)
- $q = \frac{1}{7}$: [Link](https://www.youtube.com/watch?v=6wgCoIzsaA8)
- $q = \frac{1}{9}$: [Link](https://www.youtube.com/watch?v=C4t_ps3VKvI)
- $q = \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{9}$: [Link](https://www.youtube.com/watch?v=JteQEN1XPyc)
Infinite Geometric Progressions with $q = \frac{k}{2k+1}$

Small k

- $\sum_{i=1}^{\infty} \left(\frac{1}{3} \right)^i = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$
- $\sum_{i=1}^{\infty} \left(\frac{2}{5} \right)^i = \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \cdots = \frac{\frac{2}{5}}{1 - \frac{2}{5}} = \frac{2}{3}$
- $\sum_{i=1}^{\infty} \left(\frac{3}{7} \right)^i = \frac{3}{7} + \frac{9}{49} + \frac{27}{243} + \cdots = \frac{\frac{3}{7}}{1 - \frac{3}{7}} = \frac{3}{4}$

The general case

- $\sum_{i=1}^{\infty} \left(\frac{k}{2k+1} \right)^i = \frac{k}{2k+1} + \frac{k^2}{(2k+1)^2} + \frac{k^3}{(2k+1)^3} + \cdots = \frac{\frac{k}{2k+1}}{1 - k \frac{k}{2k+1}} = \frac{k}{k+1}$

A visual proof

- $q = \frac{4}{9}$: https://www.youtube.com/watch?v=woKVh51KPl4
Sum of Powers of First n Integers

Small exponents

\[
\sum_{i=1}^{n} i^0 = 1 + 1 + \cdots + 1 = n \approx \frac{1}{1} n^1
\]

\[
\sum_{i=1}^{n} i^1 = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2} n^2
\]

\[
\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3} n^3
\]

\[
\sum_{i=1}^{n} i^3 = 1 + 8 + 27 + \cdots + n^3 = \frac{n^2(n+1)^2}{4} \approx \frac{1}{4} n^4
\]

\[
\vdots
\]

\[
\sum_{i=1}^{n} i^k = 1^k + 2^k + \cdots + n^k \approx \frac{1}{k+1} n^{k+1}
\]
Sum of First n Squares

Identity

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Visual proofs

- Proof 1: https://www.youtube.com/watch?v=-tJhH_k2LaM
- Proof 2: https://www.youtube.com/watch?v=UqVmocdLFGc
- Proof 3: https://www.youtube.com/watch?v=WidzHiUFWNA

Proof by induction

- https://www.youtube.com/watch?v=OI-nSvpZTpE

Another identity with double summation

- $$\sum_{i=1}^{n} i^2 = \sum_{i=1}^{n} \sum_{j=i}^{n} j$$
- A visual proof: https://www.youtube.com/watch?v=Q-frL00t2m4
Sum of First n Squares

Correctness for Small n

\[
\begin{align*}
1 &= 1 = \frac{1 \cdot 2 \cdot 3}{6} = \frac{6}{6} \\
1 + 4 &= 5 = \frac{2 \cdot 3 \cdot 5}{6} = \frac{30}{6} \\
1 + 4 + 9 &= 14 = \frac{3 \cdot 4 \cdot 7}{6} = \frac{84}{6} \\
1 + 4 + 9 + 16 &= 30 = \frac{4 \cdot 5 \cdot 9}{6} = \frac{180}{6} \\
1 + 4 + 9 + 16 + 25 &= 55 = \frac{5 \cdot 6 \cdot 11}{6} = \frac{330}{6} \\
1 + 4 + 9 + 16 + 25 + 36 &= 91 = \frac{6 \cdot 7 \cdot 13}{6} = \frac{546}{6} \\
1 + 4 + 9 + 16 + 25 + 36 + 49 &= 140 = \frac{7 \cdot 8 \cdot 15}{6} = \frac{840}{6}
\end{align*}
\]
Proof By Induction

Notations

- \(L(n) = 1 + 4 + 9 + \cdots + (n - 1)^2 + n^2 \)
- \(R(n) = \frac{n(n+1)(2n+1)}{6} \)

The induction base: \(n = 1 \)

- \(L(1) = R(1) \), because \(L(1) = 1^2 = 1 \) and \(R(1) = \frac{1 \cdot 2 \cdot 3}{6} = 1 \)

The induction hypothesis: \(L(k) = R(k) \) for \(k \geq 1 \)

\[
\sum_{i=1}^{k} i^2 = 1 + 4 + 9 + \cdots + (k - 1)^2 + k^2 = \frac{k(k+1)(2k+1)}{6}
\]
Proof By Induction

The inductive step: $L(k + 1) = R(k + 1)$ for $k \geq 1$

\[
L(k + 1) = 1 + 4 + 9 + \cdots + k^2 + (k + 1)^2 \\
= L(k) + (k + 1)^2 \\
= R(k) + (k + 1)^2 \\
= \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \\
= \frac{(2k^3 + 3k^2 + k) + (6k^2 + 12k + 6)}{6} \\
= \frac{2k^3 + 9k^2 + 13k + 6}{6} \\
= \frac{(k + 1)(k + 2)(2k + 3)}{6} \\
= \frac{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}{6} \\
= R(k + 1)
\]
The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 = R(k + 1) = \frac{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}{6} = \frac{(k + 1)(k + 2)(2k + 3)}{6} = \frac{(k^2 + 3k + 2)(2k + 3)}{6} = \frac{2k^3 + 9k^2 + 13k + 6}{6}
\]
Sum of First n Cubes

Identity

$$\sum_{i=1}^{n} i^3 = 1 + 8 + 27 + \cdots + (n - 1)^3 + n^3$$

$$= \frac{n^2(n + 1)^2}{4}$$

$$= \left(\frac{n(n + 1)}{2} \right)^2$$

$$= (1 + 2 + 3 + \cdots + (n - 1) + n)^2$$

Visual Proofs

- Proof 1: https://www.youtube.com/watch?v=YQLicI8R4Gs
- Proof 2: https://www.youtube.com/watch?v=Ye9OPNqV9FA
- Proof 3: https://www.youtube.com/watch?v=Nx0cT_VKQR0
Sum of First n Cubes

Correctness for Small n

1	$1 = 1 = \frac{1^2 \cdot 2^2}{4} = \frac{4}{4}$
$1 + 8$	$9 = \frac{2^2 \cdot 3^2}{4} = \frac{36}{4}$
$1 + 8 + 27$	$36 = \frac{3^2 \cdot 4^2}{4} = \frac{144}{4}$
$1 + 8 + 27 + 64$	$100 = \frac{4^2 \cdot 5^2}{4} = \frac{400}{4}$
$1 + 8 + 27 + 64 + 125$	$225 = \frac{5^2 \cdot 6^2}{4} = \frac{900}{4}$
$1 + 8 + 27 + 64 + 125 + 216$	$441 = \frac{6^2 \cdot 7^2}{4} = \frac{1764}{4}$
$1 + 8 + 27 + 64 + 125 + 216 + 343$	$784 = \frac{7^2 \cdot 8^2}{4} = \frac{3136}{4}$
Proof By Induction

Notations

- \(L(n) = 1 + 8 + 27 + \cdots + (n - 1)^3 + n^3 \)
- \(R(n) = \frac{n^2(n+1)^2}{4} \)

The induction base: \(n = 1 \)

- \(L(1) = R(1) \), because \(L(1) = 1^3 = 1 \) and \(R(1) = \frac{1^2 \cdot 2^2}{4} = 1 \)

The induction hypothesis: \(L(k) = R(k) \) for \(k \geq 1 \)

\[
\sum_{i=1}^{k} i^3 = 1 + 8 + 27 + \cdots + (k - 1)^3 + k^3 = \frac{k^2(k + 1)^2}{4}
\]
The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = 1 + 8 + 27 + \cdots + k^3 + (k + 1)^3 \\
= L(k) + (k + 1)^3 \\
= R(k) + (k + 1)^3 \\
= \frac{k^2(k + 1)^2}{4} + (k + 1)^3 \\
= \frac{k^2(k + 1)^2 + 4(k + 1)^3}{4} \\
= \frac{(k + 1)^2(k^2 + 4k + 4)}{4} \\
= \frac{(k + 1)^2(k + 2)^2}{4} \\
= R(k + 1)
\]
Another Identity

\[
\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2n-1} - \frac{1}{2n}
\]

Correctness for Small \(n \)

\[
\frac{1}{2} = \frac{1}{2} = 1 - \frac{1}{2}
\]
\[
\frac{1}{3} + \frac{1}{4} = \frac{7}{12} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}
\]
\[
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{37}{60} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}
\]
\[
\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} = \frac{533}{840} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}
\]
Proof By Induction

Notations

- \(L(n) = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \)
- \(R(n) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2n-1} - \frac{1}{2n} \)

The induction base: \(n = 1 \)

- \(L(1) = R(1) \), because \(L(1) = \frac{1}{2} \) and \(R(1) = 1 - \frac{1}{2} = \frac{1}{2} \)

The induction hypothesis: \(L(k) = R(k) \) for \(k \geq 1 \)

\[
\frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{2k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2k-1} - \frac{1}{2k}
\]
Proof By Induction

The inductive step: \(L(k + 1) = R(k + 1) \) for \(k \geq 1 \)

\[
L(k + 1) = \frac{1}{k + 2} + \frac{1}{k + 3} + \cdots + \frac{1}{2k} + \frac{1}{2k + 1} + \frac{1}{2k + 2}
\]
\[
= \frac{1}{k + 1} + \frac{1}{k + 2} + \cdots + \frac{1}{2k} + \frac{1}{2k + 1} + \frac{1}{2k + 2} - \frac{1}{k + 1}
\]
\[
= L(k) + \frac{1}{2k + 1} + \left(\frac{1}{2k + 2} - \frac{1}{k + 1} \right)
\]
\[
= L(k) + \frac{1}{2k + 1} - \frac{1}{2k + 2}
\]
\[
= R(k) + \frac{1}{2k + 1} - \frac{1}{2k + 2}
\]
\[
= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2k - 1} - \frac{1}{2k} + \frac{1}{2k + 1} - \frac{1}{2k + 2}
\]
\[
= R(k + 1)
\]
Prime Factorization

Theorem

Every positive integer $n \geq 2$ is a power of a prime number or the product of powers of prime numbers

Proof by Induction

- **Induction base:** $2 = 2^1$ is a power of a prime
- **Induction hypothesis:** Assume every positive integer less than n is a prime number or a product of powers of prime numbers
- **Inductive step:**
 - If n is a prime, then $n = n^1$ is a power of a prime
 - Otherwise, $n = m \cdot h$ is a product of two numbers $m < n$ and $h < n$
 - By the induction hypothesis, both m and h are power of prime numbers or products of prime numbers
 - Therefore, $n = m \cdot h$ is also a power of a prime number or a product of powers of prime numbers
Prime Factorization

Example I

- $90 = 15 \cdot 6 = (3 \cdot 5)(2 \cdot 3)$
- Therefore by induction, $90 = 2 \cdot 3^2 \cdot 5$

Example II

- $216 = 12 \cdot 18 = (2^2 \cdot 3)(2 \cdot 3^2)$
- Therefore by induction, $216 = 2^3 \cdot 3^3$

Example III

- $128 = 8 \cdot 16 = 2^3 \cdot 2^4$
- Therefore by induction, $128 = 2^7$

Online resource

- Strong induction: prime factorization and another example

 https://www.youtube.com/watch?v=g9YSizeBwgo&t=317s
A Chocolate Bar Problem

Problem

- A chocolate bar consisting of \(n \geq 1 \) unit squares is arranged as an \(m \times h \) rectangular grid (\(n = m \cdot h \))

- The goal is to split the bar into \(n \) individual unit squares by breaking along the lines

- It is not allowed to break more than one rectangular piece at a time (e.g., by piling them together).

- What is the required number of breaks?

Online resource

- https://www.youtube.com/watch?v=yftf3fs9k6s
A Chocolate Bar Problem

Claim
- For $0 \leq k \leq n - 1$, after k breaks, there are $k + 1$ pieces.

Proof by induction sketch
- By induction on the number of breaks.
- After $k = 0$ breaks there is one piece and indeed $1 = 0 + 1$.
- Before the k^{th} break, by the induction hypothesis, there were $k = (k - 1) + 1$ pieces.
- After the k^{th} break there are $k + 1$ pieces because the break replaces one of the pieces with two pieces.

Corollary
- After $n - 1$ breaks there are n pieces. That is, the bar was split into n individuals unit squares.
More Examples

Three problems
- L-shape tiles of size 3 can tile any square of size $2^n \times 2^n$ small squares with any missing square
- Number of steps needed to solve the tower of Hanoi problem
- Any partition of the circle with chords can be face-colored with two colors

Online resource
- https://www.youtube.com/watch?v=5Hn8vUE3cBQ

Remark
- All proofs imply an algorithm!
A False Divisibility Claim

Claim

- \(n^3 - n + 1 \) is divisible by 3

Wrong for small values of \(n \)

\[
\begin{align*}
1^3 - 1 + 1 & = 1 = 3 \cdot 0 + 1 \\
2^3 - 2 + 1 & = 7 = 3 \cdot 2 + 1 \\
3^3 - 3 + 1 & = 25 = 3 \cdot 8 + 1 \\
4^3 - 4 + 1 & = 61 = 3 \cdot 20 + 1 \\
\end{align*}
\]
Proof By Induction

The induction base

- Skip the base case!

The induction hypothesis for k

- Assume that $k^3 - k + 1 = 3q$ is divisible by 3

The inductive step for $k + 1$

\[
(k + 1)^3 - (k + 1) + 1 = k^3 + 3k^2 + 3k + 1 - k - 1 + 1
\]
\[
= (k^3 - k + 1) + (3k^2 + 3k)
\]
\[
= 3q + 3(k^2 + k)
\]
\[
= 3(q + k^2 + k)
\]

(* Q.E.D. *)
Correct Claim

Theorem

- $n^3 - n$ is divisible by 6

Small values of n

- $1^3 - 1 = 0 = 6 \cdot 0$
- $2^3 - 2 = 6 = 6 \cdot 1$
- $3^3 - 3 = 24 = 6 \cdot 4$
- $4^3 - 4 = 60 = 6 \cdot 10$

Proof

- $n^3 - n = n(n^2 - 1) = (n - 1)n(n + 1)$
- That is, $n^3 - n$ is a product of three consecutive integers
- One of them must be divisible by 3
- One (could be the same integer) must be even
- Therefore, the product of the three integers must be divisible by 6
\[6n = 0 \text{ for All Integers } n \geq 0 \]

Proof by induction for \(n \geq 0 \)

- Clearly, if \(n = 0 \), then \(6n = 0 \)
- Let \(n > 0 \) and assume that \(6k = 0 \) for all \(0 \leq k < n \)
- Let \(n = h + m \) for integers \(0 \leq h < n \) and \(0 \leq m < n \)
- By the **strong** induction hypothesis, \(6h = 0 \) and \(6m = 0 \).
- Therefore \(6n = 6(h + m) = 6h + 6m = 0 + 0 = 0 \)
- Q.E.D.

Where is the Error?

- The proof fails for \(n = 1 \)
- 1 cannot be expressed as a sum of two non-negative integers that are smaller than 1
All Horses in the World are of the Same Color

Proof by induction on the number of horses

- The base of the induction is that if there is one horse, then it is trivially the same color as itself
- Suppose that there are \(n \) horses, numbered 1 through \(n \)
- By the induction hypothesis, the \(n - 1 \) horses 1 through \(n - 1 \) are all of the same color
- Assume this color is black. In particular, horse 2 is black
- This means that the \(n - 1 \) horses 2 through \(n \) must be black by the induction hypothesis
- Therefore, all of the horses 1 through \(n \) are of the same color

Where is the Error?

- Proof fails for \(n = 2 \) in which horse 2 may be of a different color

Online resources

- https://www.youtube.com/watch?v=sCUg5DNCETI
- https://en.wikipedia.org/wiki/All_horses_are_the_same_color