What is a Proof?

1. The cogency of evidence that compels acceptance by the mind of a truth or a fact.

2. A formal series of statements showing that if one thing is true something else necessarily follows from it.

3. The process or an instance of establishing the validity of a statement especially by derivation from other statements in accordance with principles of reasoning.

4. A sequence of statements, each of which is either validly derived from those preceding it or is an axiom or assumption, and the final member of which, the conclusion, is the statement of which the truth is thereby established.

5. A chain of reasoning using rules of inference, ultimately based on a set of axioms, that lead to a conclusion.
Paul Erdős, although an atheist, spoke of “The Book”, an imaginary book in which God had written down the best and most elegant proofs for mathematical theorems.

He said, “You don’t have to believe in God, but you should believe in The Book”.

He accused God of keeping the most elegant mathematical proofs to itself.

When he saw a particularly beautiful mathematical proof he would exclaim, “This one is from The Book”.

Proofs and End of Proofs

End of Proof:

- Q.E.D. or □
- Latin: Quod Erat Demonstrandum
- English: Which Was to be Demonstrated
End of Proof:

- Q.E.D. or □
- Latin: Quod Erat Demonstrandum
- English: Which Was to be Demonstrated

Some history:
https://www.youtube.com/watch?v=S0DSM-EkQE8
Cartoons

Some Major Techniques

- Direct Proofs
- Proof by contradiction
- Proof by contrapositive
- Proof by induction
Direct Proofs

Proof by construction and/or proof by exhaustion

- Goal: prove $P \Rightarrow Q$.
- Assume P is true.
- Demonstrate Q must follow from P.
Goal: prove $P \Rightarrow Q$.

Assume P is true.

Assume $\neg Q$ is true.

Demonstrate a contradiction.
Goal: prove $P \Rightarrow Q$.

Assume $\neg Q$ is true.

Demonstrate $\neg P$ must follow from $\neg Q$.

Observe $(P \Rightarrow Q) \iff (\neg Q \Rightarrow \neg P)$.
Proof By Induction

- **Goal:** prove $P \Rightarrow Q$ for P and Q expressed as a function of some ordered set S.

- **Basis:** show $P \Rightarrow Q$ is valid for a specific element $k \in S$.

- **Inductive Hypothesis:** Assume $P \Rightarrow Q$ for some element $n \in S$.

- Demonstrate $P \Rightarrow Q$ for the element $n + 1$.

- Conclude $P \Rightarrow Q$ for all elements greater than or equal to k in S.
Resources I

4 lectures about logic and proofs from “Introduction to Higher Math”:

- **Problem Solving**: https://www.youtube.com/watch?v=CMWFmjlB8v0&list=PLZhXxk_TPOStgPtqRZ6KzmkUQBQ8TSWVX&index=1

- **Introduction to Proofs**: https://www.youtube.com/watch?v=_x65OJU8Uq4&index=2&list=PLZhXxk_TPOStgPtqRZ6KzmkUQBQ8TSWVX

- **Propositional Logic**: https://www.youtube.com/watch?v=3kzhDsSzKCU&index=3&list=PLZhXxk_TPOStgPtqRZ6KzmkUQBQ8TSWVX

- **Proof Techniques**: https://www.youtube.com/watch?v=WSb9q4Rj2Bg&index=4&list=PLZhXxk_TPOStgPtqRZ6KzmkUQBQ8TSWVX
4 lectures about proofs from TrevTutor:

- **Direct Proofs:**
 https://www.youtube.com/watch?v=YFZzLQN5qOU&feature=youtu.be

- **Proof by Case:**
 https://www.youtube.com/watch?v=YDKBE0uMuy8&feature=youtu.be

- **Proof by Contraposition:**
 https://www.youtube.com/watch?v=X-hJ7krLBn0&feature=youtu.be

- **Proof by Contradiction:**
 https://www.youtube.com/watch?v=sRDwsfNDXak&feature=youtu.be

- Section 1.6: “Introduction to Proofs” (pages 75-86)
- Section 1.7: “Proof Methods and Strategy” (pages 86-104)

Two articles about proofs:

- Basic Proof Techniques:
 https://www.cse.wustl.edu/~cytron/547Pages/f14/IntroToProofs_Final.pdf

- Mathematical proof (Wikipedia):
 https://en.wikipedia.org/wiki/Mathematical_proof
Three Classic Proofs

- The square root of 2 is an irrational number
- There are infinitely many prime numbers
- The Pythagorean Theorem
The square root of 2 is an irrational number

Proof I:

Assume towards contradiction that $p/q = \sqrt{2}$ for two positive integers p and q that have no common divisor. Squaring the equation implies $p^2 = 2q^2$. Therefore, p must be even. Let $p = 2r$ for a positive integer r. It follows that $2q^2 = (2r)^2 = 4r^2 \Rightarrow q^2 = 2r^2$. Therefore, q must be even. A contradiction since both p and q are even.
The square root of 2 is an irrational number

Proof I:

Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.

Squaring the equation implies \(p^2 = 2q^2 \). Therefore, \(p \) must be even. Let \(p = 2r \) for a positive integer \(r \). It follows that \(2q^2 = (2r)^2 = 4r^2 \Rightarrow q^2 = 2r^2 \). Therefore, \(q \) must be even. A contradiction since both \(p \) and \(q \) are even.
The square root of 2 is an irrational number

Proof I:

- Assume towards **contradiction** that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.
- Squaring the equation implies \(p^2 = 2q^2 \).
The square root of 2 is an irrational number

Proof I:

Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.

Squaring the equation implies \(p^2 = 2q^2 \).

Therefore, \(p \) must be even.
The square root of 2 is an irrational number

Proof I:

- Assume towards contradiction that $\frac{p}{q} = \sqrt{2}$ for two positive integers p and q that have no common divisor.
- Squaring the equation implies $p^2 = 2q^2$.
- Therefore, p must be even.
- Let $p = 2r$ for a positive integer r.
The square root of 2 is an irrational number

Proof I:

- Assume towards **contradiction** that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.

- Squaring the equation implies \(p^2 = 2q^2 \).

- Therefore, \(p \) must be even.

- Let \(p = 2r \) for a positive integer \(r \).

- It follows that \(2q^2 = (2r)^2 = 4r^2 \Rightarrow q^2 = 2r^2 \).
The square root of 2 is an irrational number

Proof I:

- Assume towards **contradiction** that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.
- Squaring the equation implies \(p^2 = 2q^2 \).
- Therefore, \(p \) must be even.
- Let \(p = 2r \) for a positive integer \(r \).
- It follows that \(2q^2 = (2r)^2 = 4r^2 \Rightarrow q^2 = 2r^2 \).
- Therefore, \(q \) must be even.
The square root of 2 is an irrational number

Proof I:

- Assume towards **contradiction** that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) that have no common divisor.
- Squaring the equation implies \(p^2 = 2q^2 \).
- Therefore, \(p \) must be even.
- Let \(p = 2r \) for a positive integer \(r \).
- It follows that \(2q^2 = (2r)^2 = 4r^2 \Rightarrow q^2 = 2r^2 \).
- Therefore, \(q \) must be even.
- A **contradiction** since both \(p \) and \(q \) are even.
The square root of 2 is an irrational number

Proof II:

Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) with the smallest possible positive \(q \).

Squaring the equation implies \(p^2 = 2q^2 \).

It follows that \((2q - p)^2 = 4q^2 - 4pq + p^2 = 2p^2 - 4pq + 2q^2 = 2(p - q)^2 \).

Therefore, \(\sqrt{2} = \frac{2q - p}{p - q} \).

Note that \(p - q < q \) because otherwise \(p \geq 2q \Rightarrow \frac{p}{q} \geq 2 > \sqrt{2} \).

A contradiction to the minimality assumption about \(q \).
The square root of 2 is an irrational number

Proof II:

Assume towards **contradiction** that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) with the smallest possible positive \(q \).
The square root of 2 is an irrational number

Proof II:

- Assume towards contradiction that $\frac{p}{q} = \sqrt{2}$ for two positive integers p and q with the smallest possible positive q.

- Squaring the equation implies $p^2 = 2q^2$.

Note that $p - q < q$ because otherwise $p \geq 2q \Rightarrow \frac{p}{q} \geq \sqrt{2}$. A contradiction to the minimality assumption about q.

The square root of 2 is an irrational number

Proof II:

- Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) with the smallest possible positive \(q \).

- Squaring the equation implies \(p^2 = 2q^2 \).

- It follows that
 \[
 (2q - p)^2 = 4q^2 - 4pq + p^2 = 2p^2 - 4pq + 2q^2 = 2(p - q)^2.
 \]
The square root of 2 is an irrational number

Proof II:

- Assume towards contradiction that $\frac{p}{q} = \sqrt{2}$ for two positive integers p and q with the smallest possible positive q.
- Squaring the equation implies $p^2 = 2q^2$.
- It follows that

 $$(2q - p)^2 = 4q^2 - 4pq + p^2 = 2p^2 - 4pq + 2q^2 = 2(p - q)^2.$$
- Therefore,

 $$2 = \frac{(2q-p)^2}{(p-q)^2} \Rightarrow \sqrt{2} = \frac{2q-p}{p-q}.$$
The square root of 2 is an irrational number

Proof II:

- Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) with the smallest possible positive \(q \).

- Squaring the equation implies \(p^2 = 2q^2 \).

- It follows that
 \[
 (2q - p)^2 = 4q^2 - 4pq + p^2 = 2p^2 - 4pq + 2q^2 = 2(p - q)^2.
 \]

- Therefore,
 \[
 2 = \frac{(2q - p)^2}{(p - q)^2} \Rightarrow \sqrt{2} = \frac{2q - p}{p - q}.
 \]

- Note that \(p - q < q \) because otherwise \(p \geq 2q \Rightarrow \frac{p}{q} \geq 2 > \sqrt{2} \).
The square root of 2 is an irrational number

Proof II:

- Assume towards contradiction that \(\frac{p}{q} = \sqrt{2} \) for two positive integers \(p \) and \(q \) with the smallest possible positive \(q \).

- Squaring the equation implies \(p^2 = 2q^2 \).

- It follows that
 \[
 (2q - p)^2 = 4q^2 - 4pq + p^2 = 2p^2 - 4pq + 2q^2 = 2(p - q)^2.
 \]

- Therefore, \(2 = \frac{(2q-p)^2}{(p-q)^2} \Rightarrow \sqrt{2} = \frac{2q-p}{p-q} \).

- Note that \(p - q < q \) because otherwise \(p \geq 2q \Rightarrow \frac{p}{q} \geq 2 > \sqrt{2} \).

- A contradiction to the minimality assumption about \(q \).
Resources

The original proof and finding segments of length \sqrt{k} (integers $k \geq 2$):
- https://www.youtube.com/watch?v=sbGjr_awePE

Five proofs with animation:
- https://www.youtube.com/watch?v=zEXcsZo4hOQ

The story of $\sqrt{2}$:

Approximating $\sqrt{2}$:
- https://www.youtube.com/watch?v=f1yDExNAEMg&feature=youtu.be

Videos with longer explanations:
- Original proof: https://www.youtube.com/watch?v=rOGqq1OlrzI&feature=youtu.be
- Original proof: https://www.youtube.com/watch?v=TwNfWgMHFmI
- Second proof: https://www.youtube.com/watch?v=VeZ1eYkcFus
There are infinitely many prime numbers

Proof:

Let \(p_1 < p_2 < \cdots < p_n \) be a set of \(n \) primes.

Let \(Q = p_1 p_2 \cdots p_n + 1 \).

If \(Q \) is a prime, then a new prime is found.

Otherwise, \(Q \) is a product of two or more primes.

The Fundamental Theorem of Arithmetic.

None of these primes can be \(p_1, \ldots, p_n \).

Therefore, a new prime is found.

This process can continue to find infinitely many primes.
There are infinitely many prime numbers

Proof:

Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
There are infinitely many prime numbers

Proof:

- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1 p_2 \cdots p_n + 1$.
There are infinitely many prime numbers

Proof:

- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1 p_2 \cdots p_n + 1$.
- If Q is a prime, then a new prime is found.
There are infinitely many prime numbers

Proof:
- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1 p_2 \cdots p_n + 1$.
- If Q is a prime, then a new prime is found.
- Otherwise, Q is a product of two or more primes.
 - The Fundamental Theorem of Arithmetic.
There are infinitely many prime numbers

Proof:
- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1 p_2 \cdots p_n + 1$.
- If Q is a prime, then a new prime is found.
- Otherwise, Q is a product of two or more primes.
 - The Fundamental Theorem of Arithmetic.
- None of these primes can be p_1, \ldots, p_n.
There are infinitely many prime numbers

Proof:

- Let \(p_1 < p_2 < \cdots < p_n \) be a set of \(n \) primes.
- Let \(Q = p_1 p_2 \cdots p_n + 1 \).
- If \(Q \) is a prime, then a new prime is found.
- Otherwise, \(Q \) is a product of two or more primes.
 - The Fundamental Theorem of Arithmetic.
- None of these primes can be \(p_1, \ldots, p_n \).
- Therefore, a new prime is found.
There are infinitely many prime numbers

Proof:

- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1p_2\cdots p_n + 1$.
- If Q is a prime, then a new prime is found.
- Otherwise, Q is a product of two or more primes.
 - The Fundamental Theorem of Arithmetic.
- None of these primes can be p_1, \ldots, p_n.
- Therefore, a new prime is found.
- This process can continue to find infinitely many primes.
Resources

The original proof by Euclid:

https://www.youtube.com/watch?v=dQmdHpvyfJs

Another similar proof:

https://www.youtube.com/watch?v=fOXZgcAsrP8
The Pythagorean Theorem

An illustration:
https://www.researchgate.net/profile/Elvar_Theodorsson/publication/311442050/figure/fig3/AS:
436272582926338@1481026897487/
The-pythagorean-theorem-states-that-the-square-of-the-hypotenuse-the-side-opposite-the.png

First Example:
http://www.learnalberta.ca/content/memg/Division03/Pythagorean%20Theorem/pythagex.gif

An “experimental” proof:
- https://www.youtube.com/watch?v=CAkMUdeB06o
- https://www.youtube.com/watch?v=_e6w5GtkcGI
Theorem:
Let $\triangle ABC$ be a right triangle with hypotenuse of length c and two sides of lengths a and b. Then $c^2 = a^2 + b^2$.
“Famous” Proofs

Pythagoras’ proof:
- https://www.youtube.com/watch?v=4yEyLZUEmQ8&feature=youtu.be
- https://www.youtube.com/watch?v=T2K11eFepcs
- https://www.youtube.com/watch?v=8vHO-tFx3K0

Euclid’s Proof:
- https://www.youtube.com/watch?v=k2F56Vv1avs
- https://www.youtube.com/watch?v=nxi8gV6_50o

Leonardo da Vinci’s Proof:
- https://www.youtube.com/watch?v=70rJRV12MXM
- https://www.youtube.com/watch?v=fACgdCHgv9I
Algebraic Proofs

The “popular” algebraic proof:
- https://www.youtube.com/watch?v=BNCj-K2hd_k
- https://www.youtube.com/watch?v=VjI4LtotC2o

James Garfield’s Proof:
- https://www.youtube.com/watch?v=M-icQsRo4E8
- https://www.youtube.com/watch?v=tVwOSG4fXqM

Another algebraic proof:
- Proof #3: https://www.cut-the-knot.org/pythagoras/#3
Animated Proofs

Three proofs:
- https://www.youtube.com/watch?v=YompsDlEdtc

An Origami Proof:
- https://www.youtube.com/watch?v=z6lL83wl31E

Moving objects proofs:
- https://www.youtube.com/watch?v=6HbmSRUOuDE
- https://www.youtube.com/watch?v=odfhFSnLaaw
- https://www.youtube.com/watch?v=olL86rJWkBc

6 proofs without words:
- https://www.youtube.com/watch?v=COkhrDbNcuA
Texts About Proofs

Other proofs:

http://jwilson.coe.uga.edu/EMT668/EMT668.Student.Folders/HeadAngela/essay1/Pythagorean.html

122 proofs:

http://www.cut-the-knot.org/pythagoras/

More about the Theorem and its proofs:

https://en.wikipedia.org/wiki/Pythagorean_theorem
The construction of the Pythagoras tree begins with a square. Upon this square are constructed two squares, each scaled down by a linear factor of $\sqrt{2}/2$, such that the corners of the squares coincide pairwise. The same procedure is then applied recursively to the two smaller squares, ad infinitum.
Let θ be the angle between the side a and the hypotenuse c.

Then by definition $\sin \theta = b/c$ and $\cos \theta = a/c$.

Consequently,

$$\sin^2(\theta) + \cos^2(\theta) = \left(\frac{b}{c}\right)^2 + \left(\frac{a}{c}\right)^2 = \frac{a^2 + b^2}{c^2}$$

Therefore,

$$\sin^2(\theta) + \cos^2(\theta) = 1 \iff c^2 = a^2 + b^2$$
Let θ be the angle between the side a and the hypotenuse c. Then by definition $\sin \theta = b/c$ and $\cos \theta = a/c$. Consequently,

$$\sin^2(\theta) + \cos^2(\theta) = \left(\frac{b}{c}\right)^2 + \left(\frac{a}{c}\right)^2 = \frac{a^2 + b^2}{c^2}$$

Therefore,

$$\sin^2(\theta) + \cos^2(\theta) = 1 \iff c^2 = a^2 + b^2$$

https://www.youtube.com/watch?v=MyO2MFJbfi4
https://www.youtube.com/watch?v=Zb0An8dxDas
False Proofs

\(a = b \) for two real numbers \(a > b \):

\[
\begin{align*}
 a &= b + c \\
 (a - b)a &= (a - b)(b + c) \\
 a^2 - ab &= ab + ac - b^2 - bc \\
 a^2 - ab - ac &= ab - b^2 - bc \\
 a(a - b - c) &= b(a - b - c) \\
 a &= b
\end{align*}
\]

What is wrong?

Division by zero is forbidden!
False Proofs

$a = b$ for two real numbers $a > b$:

\[
\begin{align*}
 a &= b + c \\
 (a - b)a &= (a - b)(b + c) \\
 a^2 - ab &= ab + ac - b^2 - bc \\
 a^2 - ab - ac &= ab - b^2 - bc \\
 a(a - b - c) &= b(a - b - c) \\
 a &= b
\end{align*}
\]

What is wrong?

- Division by zero is forbidden!
False Proofs

\[2 + 2 = 5: \]

- [Link](https://www.youtube.com/watch?v=7eEUjvd3_I4)

\[(−a)^2 = a^2 \] doesn't imply that \(−a = a! \)

\[0 = 1: \]

- [Link](https://www.youtube.com/watch?v=aOxMTgCORhA)

Cannot manipulate a non-convergent infinite sequence!
False Proofs

\[2 + 2 = 5:\]

[https://www.youtube.com/watch?v=7eEUjvd3_I4]

What is wrong?

[−a]² = a² doesn’t imply that −a = a!
False Proofs

2 + 2 = 5:
- https://www.youtube.com/watch?v=7eEUjvd3_I4

What is wrong?
- $(−a)^2 = a^2$ doesn’t imply that $−a = a$!

0 = 1:
- https://www.youtube.com/watch?v=aOxMTgCORhA
2 + 2 = 5:
- [Link](https://www.youtube.com/watch?v=7eEUjvd3_I4)

What is wrong?
- \((-a)^2 = a^2\) doesn’t imply that \(-a = a\)!

0 = 1:
- [Link](https://www.youtube.com/watch?v=aOxMTgCORhA)

What is wrong?
- Cannot manipulate a non-convergent infinite sequence!
False Proofs

2 = 0:
https://www.youtube.com/watch?v=1irvvZzbJkU

3 = 0:
https://www.youtube.com/watch?v=SGUZ-8u10xM&feature=youtu.be