Discrete Structures: Recursion

Amotz Bar-Noy

Department of Computer and Information Science
Brooklyn College
Recursion

Poem

Great fleas have little fleas upon their backs to bite ’em, And little fleas have lesser fleas, and so ad infinitum. And the great fleas themselves in turn have greater fleas to go on; While these again have greater still, and greater still, and so on.

Illustrations

- https://storage.googleapis.com/algodailyrandomassets/curriculum/recursion/cover.jpg
Recursion

Definition

Recursion occurs when something is defined in terms of its type.

Focus

- Recursive formulas in mathematics
- Recursive programs in computer science
Recursive Formulas

Definition
- A recursive formula is usually defined on the set of integers greater than or equal to some number m (usually 0 or 1)
- The formula computes the n^{th} value based on some or all of the previous $n - 1$ values

Goal
- Given initial values and a recursive formula, find an equivalent closed-form expression as a function of n that does not depend on previous values

Recursion and induction
- Usually proving the correctness of a solution (a closed-form expression) to a recursive formula is done by induction
The Non-Negative Integers

The recursive formula

\[N(n) = \begin{cases}
0 & \text{for } n = 0 \\
N(n - 1) + 1 & \text{for } n > 0
\end{cases} \]

The recursive pseudocode

function \(N(n) \) (* integer \(n \geq 0 \) *)

\[
\begin{align*}
\text{if } n &= 0 \\
\text{then return } (0) \\
\text{else return } (N(n - 1) + 1)
\end{align*}
\]
The Non-Negative Integers

Top-Down evaluation

\[N(n) = (N(n - 1) + 1) \]
\[= (N(n - 2) + 1) + 1 \]
\[= (N(n - 3) + 1) + 1 + 1 \]
\[= (N(n - 4) + 1) + 1 + 1 + 1 \]
\[\vdots \]
\[= (N(n - n) + 1) + 1 + \cdots + 1 \]
\[= N(0) + 1 + 1 + \cdots + 1 \]
\[= 0 + n \]
\[= n \]
The Non-Negative Integers

The closed-form expression

\[N(n) = n \]

Proof by induction

- Induction base: \(N(0) = 0 \)
- Induction hypothesis: \(N(n - 1) = n - 1 \) for \(n > 0 \)
- Inductive step for \(n > 0 \):

\[
\begin{align*}
N(n) &= N(n - 1) + 1 \\
 &= (n - 1) + 1 \\
 &= n
\end{align*}
\]
The Non-Negative Integers

Bottom-Up evaluation

\[
\begin{align*}
N(0) &= 0 &= 0 &= 0 \\
N(1) &= N(0) + 1 &= 0 + 1 &= 1 \\
N(2) &= N(1) + 1 &= 1 + 1 &= 2 \\
N(3) &= N(2) + 1 &= 2 + 1 &= 3 \\
N(4) &= N(3) + 1 &= 3 + 1 &= 4 \\
\vdots & \vdots & \vdots & \vdots \\
N(n) &= N(n - 1) + 1 &= (n - 1) + 1 &= n
\end{align*}
\]
The Non-Negative Integers

The non-recursive pseudocode

function \textit{N}(n) (* integer \(n \geq 0 \) *)

\(k = 0 \)

\textbf{for} \(i = 1 \) \textbf{to} \(n \)

\(k = k + 1 \)

\textbf{return} (\(k \))

Why it is the same as the recursive pseudocode?

- The \textit{recursive pseudocode} implements the \textbf{Top-Down} evaluation
- The \textit{non-recursive pseudocode} implements the \textbf{Bottom-Up} evaluation
The Non-Positive Integers

The recursive formula

\[N(n) = \begin{cases}
0 & \text{for } n = 0 \\
N(n - 1) - 1 & \text{for } n > 0
\end{cases} \]

The recursive pseudocode

function \(N(n) \) (* integer \(n \geq 0 \) *)
 if \(n = 0 \)
 then return \((0) \)
 else return \((N(n - 1) - 1) \)
The Non-Positive Integers

Top-Down evaluation

\[N(n) = (N(n - 1) - 1) \]
\[= (N(n - 2) - 1) - 1 \]
\[= (N(n - 3) - 1) - 1 - 1 \]
\[= (N(n - 4) - 1) - 1 - 1 - 1 \]
\[\vdots \]
\[= (N(n - n) - 1) - 1 - \cdots - 1 \]
\[= N(0) - 1 - 1 - \cdots - 1 \]
\[= 0 - n \]
\[= -n \]
The Non-Positive Integers

The closed-form expression

\[N(n) = -n \]

Proof by induction

- Induction base: \(N(0) = 0 = -0 \)
- Induction hypothesis: \(N(n-1) = -(n-1) \) for \(n > 0 \)
- Inductive step for \(n > 0 \):

\[
\begin{align*}
N(n) &= N(n-1) - 1 \\
&= -(n-1) - 1 \\
&= -n
\end{align*}
\]
The Non-Positive Integers

Bottom-Up evaluation

\[
\begin{align*}
N(0) &= 0 &= -0 &= -0 \\
N(1) &= N(0) - 1 &= -0 - 1 &= -1 \\
N(2) &= N(1) - 1 &= -1 - 1 &= -2 \\
N(3) &= N(2) - 1 &= -2 - 1 &= -3 \\
N(4) &= N(3) - 1 &= -3 - 1 &= -4 \\
&\vdots & & \vdots \\
N(n) &= N(n-1) - 1 &= -(n-1) - 1 &= -n
\end{align*}
\]
The Non-Positive Integers

The non-recursive pseudocode

function $N(n)$ (* integer $n \geq 0$ *)
 $k = -0$
 for $i = 1$ to n
 $k = k - 1$
 return(k)

Why it is the same as the recursive pseudocode?

- The recursive pseudocode implements the Top-Down evaluation
- The non-recursive pseudocode implements the Bottom-Up evaluation
Another Recursive Formula

The recursive formula

\[T(n) = \begin{cases}
2 & \text{for } n = 0 \\
T(n - 1) + 10 & \text{for } n > 0
\end{cases} \]

The recursive pseudocode

function \(T(n) \) (* integer \(n \geq 0 \) *)
 if \(n = 0 \)
 then return (2)
 else return \(T(n - 1) + 10 \)
Another Recursive Formula

Top-Down evaluation

\[T(n) = (T(n - 1) + 10) \]
\[= (T(n - 2) + 10) + 10 \]
\[= (T(n - 3) + 10) + 10 + 10 \]
\[= (T(n - 4) + 10) + 10 + 10 + 10 \]
\[\vdots \]
\[= (T(n - n) + 10) + 10 + \cdots + 10 \]
\[= \underbrace{T(0) + 10 + 10 + \cdots + 10}_{n} \]
\[= 2 + 10n \]
Another Recursive Formula

The closed-form expression

\[T(n) = 2 + 10n \]

Proof by induction

- Induction base: \(T(0) = 2 + 10 \cdot 0 = 2 \)
- Induction hypothesis: \(T(n - 1) = 2 + 10(n - 1) \) for \(n > 0 \)
- Inductive step for \(n > 0 \):

\[
T(n) = T(n - 1) + 10 \\
= (2 + 10(n - 1)) + 10 \\
= 2 + 10n - 10 + 10 \\
= 2 + 10n
\]
Another Recursive Formula

Bottom-Up evaluation

\[T(0) = 2 = 2 = 2 \]
\[T(1) = T(0) + 10 = 2 + 10 = 12 \]
\[T(2) = T(1) + 10 = 12 + 10 = 22 \]
\[T(3) = T(2) + 10 = 22 + 10 = 32 \]
\[T(4) = T(3) + 10 = 32 + 10 = 42 \]
\[\vdots \]
\[T(n) = T(n-1) + 10 = 2 + 10(n - 1) + 10 = 2 + 10n \]
Another Recursive Formula

The non-recursive pseudocode

function $T(n)$ (* integer $n \geq 0$ *)

$t = 2$

for $i = 1$ to n

$t = t + 10$

return (t)

Why it is the same as the recursive pseudocode?

- The **recursive pseudocode** implements the **Top-Down** evaluation
- The **non-recursive pseudocode** implements the **Bottom-Up** evaluation
The recursive formula

\[A(n) = \begin{cases}
 a_0 & \text{for } n = 0 \text{ and a real number } a_0 \\
 A(n-1) + d & \text{for } n > 0 \text{ and a real number } d
\end{cases} \]

The recursive pseudocode

```plaintext
function A(n) (* integer n ≥ 0 *)
  if n = 0
    then return (a_0)
  else return (A(n - 1) + d)
```
Arithmetic Progressions

Top-Down evaluation

\[A(n) = (A(n - 1) + d) \]
\[= (A(n - 2) + d) + d \]
\[= (A(n - 3) + d) + d + d \]
\[= (A(n - 4) + d) + d + d + d \]
\[\vdots \]
\[= (A(n - n) + d) + d + \cdots + d \]
\[= A(0) + d + d + \cdots + d \]
\[= a_0 + dn \]
The closed-form expression

\[A(n) = a_0 + dn \]

Proof by induction

- Induction base: \(A(0) = a_0 = a_0 + d \cdot 0 \)
- Induction hypothesis: \(A(n - 1) = a_0 + d(n - 1) \) for \(n > 0 \)
- Inductive step for \(n > 0 \):

\[
A(n) = A(n - 1) + d \\
= a_0 + d(n - 1) + d \\
= a_0 + dn - d + d \\
= a_0 + dn
\]
Arithmetic Progressions

Bottom-Up evaluation

\[
\begin{align*}
A(0) &= a_0 = a_0 = a_0 + d \cdot 0 \\
A(1) &= A(0) + d = (a_0 + d \cdot 0) + d = a_0 + d \cdot 1 \\
A(2) &= A(1) + d = (a_0 + d \cdot 1) + d = a_0 + d \cdot 2 \\
A(3) &= A(2) + d = (a_0 + d \cdot 2) + d = a_0 + d \cdot 3 \\
A(4) &= A(3) + d = (a_0 + d \cdot 3) + d = a_0 + d \cdot 4 \\
\vdots & & \vdots & \vdots \\
A(n) &= A(n-1) + d = (a_0 + d(n-1)) + d = a_0 + dn
\end{align*}
\]
The non-recursive pseudocode

function $A(n)$ (* integer $n \geq 0$ and reals d and a_0 *)

$a = a_0$

for $i = 1$ to n

$a = a + d$

return (a)

Why it is the same as the recursive pseudocode?

- The recursive pseudocode implements the Top-Down evaluation
- The non-recursive pseudocode implements the Bottom-Up evaluation
Arithmetic Progressions

The recursive formula

\[A(n) = \begin{cases}
 a_0 & \text{for } n = 0 \text{ and a real number } a_0 \\
 A(n - 1) + d & \text{for } n > 0 \text{ and a real number } d
\end{cases} \]

The closed-form expression

\[A(n) = a_0 + dn \]

Special cases

- **Non-negative integers:** \(a_0 = 0 \land d = 1 \implies A(n) = n \)
- **Non-positive integers:** \(a_0 = 0 \land d = -1 \implies A(n) = -n \)
- **Non-negative even integers:** \(a_0 = 0 \land d = 2 \implies A(n) = 2n \)
- **Positive odd integers:** \(a_0 = 1 \land d = 2 \implies A(n) = 2n + 1 \)
Powers of Two

The recursive formula

\[P(n) = \begin{cases}
1 & \text{for } n = 0 \\
2P(n - 1) & \text{for } n > 0
\end{cases} \]

The recursive pseudocode

function \(P(n) \) (* integer \(n \geq 0 \) *)

if \(n = 0 \)
then return (1)
else return (2P(n - 1))

The non-recursive pseudocode

function \(P(n) \) (* integer \(n \geq 0 \) *)

\(p = 1 \)
for \(i = 1 \) to \(n \)
\(p = 2 \cdot p \)
return (p)
Powers of Two

Top-Down evaluation

\[P(n) = 2P(n - 1) = 2^1 P(n - 1) \]
\[= 2^1(2P(n - 2)) = 2^2 P(n - 2) \]
\[= 2^2(2P(n - 3)) = 2^3 P(n - 3) \]
\[= 2^3(2P(n - 4)) = 2^4 P(n - 4) \]
\[\vdots \]
\[= 2^{n-1}(2P(n - n)) = 2^n P(n - n) \]
\[= 2^n P(0) \]
\[= 2^n \]
Powers of Two

Bottom-Up evaluation

\[
\begin{align*}
P(0) & = 1 & = 1 & = 2^0 \\
P(1) & = 2P(0) & = 2 \cdot 2^0 & = 2^1 \\
P(2) & = 2P(1) & = 2 \cdot 2^1 & = 2^2 \\
P(3) & = 2P(2) & = 2 \cdot 2^2 & = 2^3 \\
P(4) & = 2P(3) & = 2 \cdot 2^3 & = 2^4 \\
\vdots & \vdots & \vdots & \vdots \\
P(n) & = 2P(n-1) & = 2 \cdot 2^{n-1} & = 2^n
\end{align*}
\]
Powers of Two

The closed-form expression

\[P(n) = 2^n \]

Proof by induction

- Induction base: \(P(0) = 1 = 2^0 \)
- Induction hypothesis: \(P(n - 1) = 2^{n-1} \) for \(n > 0 \)
- Inductive step for \(n > 0 \):

\[
\begin{align*}
P(n) &= 2P(n - 1) \\
 &= 2 \cdot 2^{n-1} \\
 &= 2^n
\end{align*}
\]
Factorials

The recursive formula

\[F(n) = \begin{cases}
1 & \text{for } n = 1 \\
n \cdot F(n - 1) & \text{for } n > 1
\end{cases} \]

The recursive pseudocode

```
function F(n) (* integer n ≥ 1 *)
    if n = 1
        then return (1)
    else return (n \cdot F(n - 1))
```

The non-recursive pseudocode

```
function F(n) (* integer n ≥ 1 *)
    f = 1
    for i = 2 to n
        f = i \cdot f
    return(f)
```
Factorials

Top-Down evaluation

\[F(n) = nF(n - 1) \]
\[= n(n - 1)F(n - 2) \]
\[= n(n - 1)(n - 2)F(n - 3) \]
\[= n(n - 1)(n - 2)(n - 3)F(n - 4) \]
\[\vdots \]
\[= n(n - 1)(n - 2)(n - 3) \cdots (n - (n - 2)) \cdot F(1) \]
\[= n(n - 1)(n - 2)(n - 3) \cdots 2 \cdot 1 \]
\[= n! \]
Factorials

Bottom-Up evaluation

\[F(1) = 1 = 1! \]
\[F(2) = 2 \cdot F(1) = 2 \cdot 1 = 2 = 2! \]
\[F(3) = 3 \cdot F(2) = 3 \cdot 2 = 6 = 3! \]
\[F(4) = 4 \cdot F(3) = 4 \cdot 6 = 24 = 4! \]
\[F(5) = 5 \cdot F(4) = 5 \cdot 24 = 120 = 5! \]
\[\vdots \]
\[F(n) = n! \]
Factorials

The closed-form expression

\[F(n) = n! \]

Proof by induction

- Induction base: \(F(1) = 1 = 1! \)
- Induction hypothesis: \(F(n - 1) = (n - 1)! \) for \(n > 1 \)
- Inductive step for \(n > 1 \):

\[
F(n) = nF(n - 1) \\
= n(n - 1)! \\
= n!
\]
The Sum \(1 + 2 + \cdots + n\)

The recursive formula

\[
S(n) = \begin{cases}
1 & \text{for } n = 1 \\
S(n - 1) + n & \text{for } n > 1
\end{cases}
\]

The recursive pseudocode

```plaintext
function S(n) (* integer n ≥ 1 *)
    if n = 1
        then return (1)
    else return (S(n - 1) + n)
```

The non-recursive pseudocode

```plaintext
function S(n) (* integer n ≥ 1 *)
    s = 1
    for i = 2 to n
        s = s + i
    return(s)
```
The Sum $1 + 2 + \cdots + n$

Bottom-Up evaluation

- $S(1) = \frac{1 \cdot 2}{2} = 1$
- $S(2) = S(1) + 2 = \frac{2 \cdot 3}{2} = 3$
- $S(3) = S(2) + 3 = \frac{3 \cdot 4}{2} = 6$
- $S(4) = S(3) + 4 = \frac{4 \cdot 5}{2} = 10$
- $S(5) = S(4) + 5 = \frac{5 \cdot 6}{2} = 15$
- $S(6) = S(5) + 6 = \frac{6 \cdot 7}{2} = 21$
- $S(7) = S(6) + 4 = \frac{7 \cdot 8}{2} = 28$
The Sum $1 + 2 + \cdots + n$

The closed-form expression

$$S(n) = \frac{n(n + 1)}{2}$$

Proof by induction

- Induction base: $S(1) = 1 = \frac{1 \cdot 2}{2}$
- Induction hypothesis: $S(n - 1) = \frac{(n-1)n}{2}$ for $n > 1$
- Inductive step for $n > 1$:

$$S(n) = S(n - 1) + n = \frac{(n-1)n}{2} + \frac{2n}{2} = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n + 1)}{2}$$
The Sum $1 + 3 + \cdots + (2n - 1)$

The recursive formula

$$S(n) = \begin{cases}
1 & \text{for } n = 1 \\
S(n - 1) + (2n - 1) & \text{for } n > 1
\end{cases}$$

The recursive pseudocode

```pseudocode
function S(n) (* integer n ≥ 1 *)
    if n = 1
        then return (1)
    else return (S(n - 1) + (2n - 1))
```

The non-recursive pseudocode

```pseudocode
function S(n) (* integer n ≥ 1 *)
    s = 1
    for i = 2 to n
        s = s + (2i - 1)
    return(s)
```
The Sum $1 + 3 + \cdots + (2n - 1)$

Bottom-Up evaluation

- $S(1) = 1 = 1^2$
- $S(2) = S(1) + (2 \cdot 2 - 1) = 1 + 3 = 4 = 2^2$
- $S(3) = S(2) + (2 \cdot 3 - 1) = 4 + 5 = 9 = 3^2$
- $S(4) = S(3) + (2 \cdot 4 - 1) = 9 + 7 = 16 = 4^2$
- $S(5) = S(4) + (2 \cdot 5 - 1) = 16 + 9 = 25 = 5^2$
- $S(6) = S(5) + (2 \cdot 6 - 1) = 25 + 11 = 36 = 6^2$
- $S(7) = S(6) + (2 \cdot 7 - 1) = 36 + 13 = 49 = 7^2$
The Sum $1 + 3 + \cdots + (2n - 1)$

The closed-form expression

$$S(n) = n^2$$

Proof by induction

- **Induction base:** $S(1) = 1 = 1^2$
- **Induction hypothesis:** $S(n - 1) = (n - 1)^2$ for $n > 1$
- **Inductive step for $n > 1$:**

 $$S(n) = S(n - 1) + (2n - 1)$$
 $$= (n - 1)^2 + (2n - 1)$$
 $$= n^2 - 2n + 1 + 2n - 1$$
 $$= n^2$$
Generalized Geometric Progressions

The recursive formula
For real numbers g_0 and d and a positive real number $q \neq 1$

$$G(n) = \begin{cases}
g_0 & \text{for } n = 0 \\
qG(n - 1) + d & \text{for } n > 0
\end{cases}$$

The closed-form expression

$$G(n) = g_0 q^n + d \frac{q^n - 1}{q - 1}$$

Proof
By induction on $n \geq 0$

Remark
G is an arithmetic progression when $q = 1$ and $a_0 = g_0$
Generalized Geometric Progressions

Top-Down evaluation

\[G(n) = qG(n-1) + d = q^1 G(n-1) + d(1) \]
\[= q^1(qG(n-2) + d) + d(1) = q^2 G(n-2) + d(q + 1) \]
\[= q^2(qG(n-3) + d) + d(q + 1) = q^3 G(n-3) + d(q^2 + q + 1) \]
\[= q^3(qG(n-4) + d) + d(q^2 + q + 1) = q^4 G(n-4) + d(q^3 + q^2 + q + 1) \]
\[\vdots \]
\[= q^{n-1}(qG(n-n)) + d) + d(q^{n-2} + q^{n-3} + \cdots + q^2 + q + 1) \]
\[= q^n G(0) + d(q^{n-1} + q^{n-2} + \cdots + q^2 + q + 1) \]
\[= g_0 q^n + d \sum_{i=0}^{n-1} q^i \]
\[= g_0 q^n + d \frac{q^n - 1}{q - 1} \]
Generalized Geometric Progressions

Bottom-Up evaluation

\[G(0) = g_0 \]
\[G(1) = qG(0) + d = g_0q + d \]
\[G(2) = qG(1) + d = g_0q^2 + dq + d \]
\[G(3) = qG(2) + d = g_0q^3 + dq^2 + dq + d \]
\[G(4) = qG(3) + d = g_0q^4 + dq^3 + dq^2 + dq + d \]
\[\vdots \]

\[G(n) = g_0q^n + d \sum_{i=0}^{n-1} q^i \]

\[G(n) = g_0q^n + d \frac{q^n - 1}{q - 1} \]
Powers of $q \neq 1$

The recursive formula for $g_0 = 1$ and $d = 0$

$$G(n) = \begin{cases}
1 & \text{for } n = 0 \\
qG(n - 1) & \text{for } n \geq 1
\end{cases}$$

The closed-form expression

$$G(n) = g_0 \cdot q^n + d \cdot \frac{q^n - 1}{q - 1}$$

$$= 1 \cdot q^n + 0 \cdot \frac{q^n - 1}{q - 1}$$

$$= q^n$$
Sum of Powers of 2

Definition

\[G(n) = \begin{cases}
0 & \text{for } n = 0 \\
1 + 2 + \cdots + 2^{n-1} & \text{for } n \geq 1
\end{cases} \]

Proposition

\[G(n) = \begin{cases}
0 & \text{for } n = 0 \\
2G(n - 1) + 1 & \text{for } n \geq 1
\end{cases} \]

Proof

\[
G(n) = 1 + 2 + 4 + \cdots + 2^{n-1} \\
= (2 + 4 + \cdots + 2^{n-1}) + 1 \\
= 2(1 + 2 + \cdots + 2^{n-2}) + 1 \\
= 2G(n - 1) + 1
\]
Sum of Powers of 2

The recursive formula for $g_0 = 0$, $d = 1$, and $q = 2$

$$G(n) = \begin{cases}
0 & \text{for } n = 0 \\
2G(n - 1) + 1 & \text{for } n \geq 1
\end{cases}$$

The closed-form expression

$$G(n) = g_0 \cdot q^n + d \cdot \frac{q^n - 1}{q - 1}$$

$$= 0 \cdot 2^n + 1 \cdot \frac{2^n - 1}{2 - 1}$$

$$= 2^n - 1$$

Corollary

$$1 + 2 + \cdots + 2^{n-1} = 2^n - 1$$
Sum of Powers of 1/2

Definition

\[G(n) = \begin{cases}
0 & \text{for } n = 0 \\
1/2 + 1/4 + \cdots + (1/2)^n & \text{for } n \geq 1
\end{cases} \]

Proposition

\[G(n) = \begin{cases}
0 & \text{for } n = 0 \\
(1/2)G(n - 1) + 1/2 & \text{for } n \geq 1
\end{cases} \]

Proof

\[
G(n) = 1/2 + 1/4 + 1/8 + \cdots + (1/2)^n \\
= (1/4 + 1/8 + \cdots + (1/2)^n) + 1/2 \\
= (1/2)(1/2 + 1/4 + \cdots + (1/2)^{n-1}) + 1/2 \\
= (1/2)G(n - 1) + 1/2
\]
Sum of Powers of $1/2$

The recursive formula for $g_0 = 0$, $d = 1/2$, and $q = 1/2$

$$G(n) = \begin{cases}
0 & \text{for } n = 0 \\
(1/2)G(n - 1) + 1/2 & \text{for } n \geq 1
\end{cases}$$

The closed-form expression

$$G(n) = g_0 \cdot q^n + d \cdot \frac{q^n - 1}{q - 1}$$

$$= 0 \cdot (1/2)^n + (1/2) \cdot \frac{(1/2)^n - 1}{(1/2) - 1}$$

$$= (1/2) \cdot \frac{1 - (1/2)^n}{1 - 1/2}$$

$$= 1 - (1/2)^n$$

Corollary

$$1/2 + 1/4 + 1/8 + \cdots + (1/2)^{n-1} = 1 - (1/2)^n$$
Tower of Hanoi

Definition by example

https://www.youtube.com/watch?v=5Wn4EboLrMM

General definition

There are three pegs (rods) called A, B, and C and \(n \geq 1 \) disks of different sizes

Initially all the disks are placed on peg A ordered from the largest at the bottom to the smallest at the top

A legal move takes any top disk and moves it to another peg as long as it is not placed on top of a smaller disk

Goal: Move the \(n \) disks from A to B using only legal moves

Efficiency: Move the disks with as few as possible legal moves

History, Background, and beyond

Tower of Hanoi

Solution: demo
- https://www.mathsisfun.com/games/towerofhanoi.html

General Recursive solution

- **Initial call:** Move $n \geq 1$ disks from A to B
- **Recursive base:** For $n = 1$ move the single disk from A to B
- **Recursive step:** Assume $k > 1$ disks are to be moved from peg X to peg Y for $X \neq Y$ and $\{X, Y, Z\} = \{A, B, C\}$:
 - Move the top $k - 1$ disks from X to $Z \notin \{X, Y\}$
 - Move the top disk from X to Y
 - Move the top $k - 1$ disks from Z to Y

Recursive solution for four disks
- https://www.youtube.com/watch?v=YstLjLCGmgg
Correctness: proof by induction (sketch)

- **Induction base:** When \(n = 1 \), a largest top disk can be legally moved from a peg to an empty peg.

- **Induction hypothesis:** The smallest \(1 \leq k < n \) disks can be legally moved from a peg to any of the other two pegs.

- **Inductive step:**
 - The \(n - 1 \) smallest disks are legally moved from peg \(A \) to peg \(C \) by the induction hypothesis.
 - The largest disk is legally moved from peg \(A \) to the empty peg \(B \).
 - The \(n - 1 \) smallest disks are legally moved from peg \(C \) to peg \(B \) which has the largest disk by the induction hypothesis.
Total Number of moves

- Let $M(n)$ be the number of legal moves made by the recursive solution for $n \geq 1$ disks.
- Trivially, $M(1) = 1$ and by definition $M(0) = 0$.
- Recursively, $M(n) = 2M(n-1) + 1$.
- The generalized geometric progression closed-form implies that $M(n) = 2^n - 1$.
Tower of Hanoi

Number of moves by disks

For $1 \leq i \leq n$, let $m_k(n)$ be the number of legal moves of the k^{th} disk made by the recursive solution for $n \geq 1$ disks

Proposition: $m_k(n) = 2^{k-1}$

Corollary:

$$M(n) = \sum_{k=1}^{k=n} m_k(n) = \sum_{k=1}^{k=n} 2^{k-1} = \sum_{i=0}^{i=n-1} 2^i = 2^n - 1$$
Fibonacci Numbers

The sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 \ldots

The recursive definition

\[F_n = \begin{cases}
0 & \text{for } n = 0 \\
1 & \text{for } n = 1 \\
F_{n-1} + F_{n-2} & \text{for } n \geq 2
\end{cases} \]
Fibonacci Numbers

The recursive pseudocode

function $F(n)$ (* integer $n \geq 0$ *)

 if $n = 0$ then return (0)
 if $n = 1$ then return (1)
 otherwise return ($F(n-1) + F(n-2)$)

The non-recursive pseudocode

function $F(n)$ (* integer $n \geq 0$ *)

 $F_0 = 0$
 $F_1 = 1$
 for $i = 2$ to n
 $F_i = F_{i-1} + F_{i-2}$
 return (F_n)
Fibonacci Numbers - The Original Problem

Story
- A just born pair of rabbits (one of each sex) is placed on an island
- A pair of rabbits does not breed until they are 2 months old
- After they are two months old, each pair of rabbits produces another pair each month
- No rabbits ever die and no rabbits ever leave the island

Problem
- How many pairs of rabbits are there on the island after \(n \) months?

There are \(F_n \) pairs of rabbits on the island after \(n \) months
- The \(F_{n-1} \) pairs of rabbits that were alive after \(n - 1 \) months stay alive after \(n \) months
- The \(F_{n-2} \) pairs of rabbits that were alive after \(n - 2 \) months each produces a new pair of rabbits
Online Resources

The Fibonacci’s soup
https://img.devrant.com/devrant/rant/r_2238362_6BfVK.jpg

The original story
https://www.youtube.com/watch?v=sjQlW6cH3Ko

Some basics
https://www.youtube.com/watch?v=ZC-d4dKTyKw

Domino tilings of the \((2 \times n) – \text{grid}\)
https://www.youtube.com/watch?v=AFAcKDTmYXI
Additional Online Resources

Texts

- **Math is Fun:**
 https://www.mathsisfun.com/numbers/fibonacci-sequence.html

- **The life and numbers of Fibonacci:**
 https://plus.maths.org/content/life-and-numbers-fibonacci

- **Wikipedia:**
 https://en.wikipedia.org/wiki/Fibonacci_number

- **Fibonacci Numbers and the Golden Section:**
 http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

Videos

- **The magic of Fibonacci numbers:**
 https://www.youtube.com/watch?v=SjSHVDfXHQ4&vl=ja

- **The Fibonacci Sequence and Experies with Learning:**
 https://www.youtube.com/watch?v=uk6CLffEu2M
Three Consecutive Fibonacci Numbers

Identity for \(n \geq 1 \)

\[
F_{n-1}F_{n+1} = F_n^2 + (-1)^n
\]

Correctness for small \(n \)

\[
\begin{align*}
F_0F_2 &= 0 \cdot 1 = 0 = 1^2 - 1 = F_1^2 + (-1)^1 \\
F_1F_3 &= 1 \cdot 2 = 2 = 1^2 + 1 = F_2^2 + (-1)^2 \\
F_2F_4 &= 1 \cdot 3 = 3 = 2^2 - 1 = F_3^2 + (-1)^3 \\
F_3F_5 &= 2 \cdot 5 = 10 = 3^2 + 1 = F_4^2 + (-1)^4 \\
F_4F_6 &= 3 \cdot 8 = 24 = 5^2 - 1 = F_5^2 + (-1)^5 \\
F_5F_7 &= 5 \cdot 13 = 65 = 8^2 + 1 = F_6^2 + (-1)^6 \\
F_6F_8 &= 8 \cdot 21 = 168 = 13^2 - 1 = F_7^2 + (-1)^7
\end{align*}
\]

"Almost" like integers and powers of 2

\[
\begin{align*}
(n - 1)(n + 1) &= n^2 - 1 \\
2^{n-1} \cdot 2^{n+1} &= (2^n)^2
\end{align*}
\]
Proof By Induction

Notations

\[L(n) = F_{n-1}F_{n+1} \]
\[R(n) = F_n^2 + (-1)^n \]

The induction base: \(n = 1 \)

\[L(1) = F_0F_2 = 0 \cdot 1 = 0 = 1 - 1 = F_1^2 + (-1)^1 = R(1) \]

The induction hypothesis: \(L(n - 1) = R(n - 1) \) for \(n > 1 \)

\[F_{n-2}F_n = F_{n-1}^2 + (-1)^{n-1} \]
\[F_{n-1}^2 = F_{n-2}F_n - (-1)^{n-1} = F_{n-2}F_n + (-1)^n \]
Proof By Induction

The inductive step: \(L(n) = R(n) \) for \(n > 1 \)

\[
L(n) = F_{n-1}F_{n+1} \\
= F_{n-1}(F_{n-1} + F_n) \\
= F_{n-1}^2 + F_{n-1}F_n \\
= F_{n-2}F_n + (-1)^n + F_{n-1}F_n \quad (\ast \text{ the induction hypothesis } \ast) \\
= F_{n-2}F_n + F_{n-1}F_n + (-1)^n \\
= (F_{n-2} + F_{n-1})F_n + (-1)^n \\
= F_n^2 + (-1)^n \\
= R(n)
\]
Sum of First n Fibonacci numbers

Identity for $n \geq 1$

$$\sum_{i=1}^{n} F_i = F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

Correctness for small n

<table>
<thead>
<tr>
<th>F_1</th>
<th>$= 1$</th>
<th>$= 1$</th>
<th>$= 2 – 1 = F_3 – 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_1 + F_2$</td>
<td>$= 1 + 1$</td>
<td>$= 2$</td>
<td>$= 3 – 1 = F_4 – 1$</td>
</tr>
<tr>
<td>$F_1 + F_2 + F_3$</td>
<td>$= 1 + 1 + 2$</td>
<td>$= 4$</td>
<td>$= 5 – 1 = F_5 – 1$</td>
</tr>
<tr>
<td>$F_1 + F_2 + F_3 + F_4$</td>
<td>$= 1 + 1 + 2 + 3$</td>
<td>$= 7$</td>
<td>$= 8 – 1 = F_6 – 1$</td>
</tr>
<tr>
<td>$F_1 + F_2 + F_3 + F_4 + F_5$</td>
<td>$= 1 + 1 + 2 + 3 + 5$</td>
<td>$= 12$</td>
<td>$= 13 – 1 = F_7 – 1$</td>
</tr>
</tbody>
</table>

“Almost” like powers of 2

$$\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + \cdots + 2^n = 2^{n+1} – 1$$
Proof By Induction

Notations

\[L(n) = F_1 + F_2 + \cdots + F_n \]
\[R(n) = F_{n+2} - 1 \]

The induction base: \(n = 1 \)

\[L(1) = F_1 = 1 = 2 - 1 = F_3 - 1 = R(1) \]

The induction hypothesis: \(L(n - 1) = R(n - 1) \) for \(n > 1 \)

\[F_1 + F_2 + \cdots + F_{n-1} = F_{n+1} - 1 \]
Proof By Induction

The inductive step: \(L(n) = R(n) \) for \(n > 1 \)

\[
L(n) &= 1 + 1 + 2 + \cdots + F_{n-1} + F_n \\
&= L(n - 1) + F_n \\
&= R(n - 1) + F_n \quad (\ast \text{ the induction hypothesis } \ast) \\
&= (F_{n+1} - 1) + F_n \\
&= (F_n + F_{n+1}) - 1 \\
&= F_{n+2} - 1 \\
&= R(n)
\]
A Generalized Fibonacci Sequence

Definition

\[
G_n = \begin{cases}
 a & \text{for } n = 0 \\
 b & \text{for } n = 1 \\
 G_{n-1} + G_{n-2} & \text{for } n \geq 2
\end{cases}
\]

Identity

\[
\sum_{i=0}^{n} G_i = G_0 + G_1 + \cdots + G_n = G_{n+2} - G_1 = G_{n+2} - b
\]

The Fibonacci sequence special case

\[
\sum_{i=0}^{n} G_i = G_{n+2} - 1 \text{ for } a = 0 \text{ and } b = 1
\]

Example: \(a = 3\) and \(b = 2\)

- The sequence: 3, 2, 5, 7, 12, 19, 31, 50, 81, ...
- The identity: \(3 + 2 + 5 + 7 + 12 + 19 + 31 = 79 = 81 - 2\)
Proof Sketch

Expanding $G_{n+2} - G_1$

\[
G_{n+2} - G_1 = G_n + G_{n+1} - G_1 \\
= G_n + G_{n-1} + G_n - G_1 \\
= G_n + G_{n-1} + G_{n-2} + G_{n-1} - G_1 \\
= G_n + G_{n-1} + G_{n-2} + G_{n-3} + G_{n-2} - G_1 \\
\vdots \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_i + G_{i-1} + G_i - G_1 \\
\vdots \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_1 + G_0 + G_1 - G_1 \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_1 + G_0
\]
Sum of First n Odd-Indexed Fibonacci numbers

Identity for $n \geq 1$

$$\sum_{i=1}^{n} F_{2i-1} = F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$$

Correctness for small n

<table>
<thead>
<tr>
<th>F_n</th>
<th>1</th>
<th>$1+2$</th>
<th>$1+2+5$</th>
<th>$1+2+5+13$</th>
<th>$1+2+5+13+34$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_1 + F_3$</td>
<td>$1+2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_1 + F_3 + F_5$</td>
<td>$1+2+5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_1 + F_3 + F_5 + F_7$</td>
<td>$1+2+5+13$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_1 + F_3 + F_5 + F_7 + F_9$</td>
<td>$1+2+5+13+34$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Almost” like powers of 2

$$\sum_{i=0}^{n} 2^{2i-1} = 2 + 8 + 32 + \cdots + 2^{2n-1} = (2/3)(2^{2n} - 1)$$
Proof I Sketch

Expanding F_{2n}

\[
\begin{align*}
F_{2n} &= F_{2n-1} + F_{2n-2} \\
&= F_{2n-1} + F_{2n-3} + F_{2n-4} \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + F_{2n-6} \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + F_{2n-7} + F_{2n-8} \\
&\vdots \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + \cdots + F_{2k+1} + F_{2k} \\
&\vdots \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + \cdots + F_3 + F_2 \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + \cdots + F_3 + F_1 + F_0 \\
&= F_{2n-1} + F_{2n-3} + F_{2n-5} + \cdots + F_3 + F_1
\end{align*}
\]
Proof II Sketch

Evaluating the sum

\[
\sum_{i=1}^{n} F_{2i-1} = F_1 + F_3 + F_5 + \cdots + F_{2n-3} + F_{2n-1}
\]

\[
= (F_2 - F_0) + (F_4 - F_2) + (F_6 - F_4) + \cdots
\]

\[
+ (F_{2n-2} - F_{2n-4}) + (F_{2n} - F_{2n-2})
\]

\[
= F_{2n} - F_0
\]

\[
= F_{2n}
\]
Sum of First n Squares of Fibonacci numbers

Identity for $n \geq 1$

$$\sum_{i=1}^{n} F_i^2 = F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

Correctness for small n

$$F_1^2 = 1^2 = 1 = 1 \cdot 1 = F_1 F_2$$
$$F_1^2 + F_2^2 = 1^2 + 1^2 = 2 = 1 \cdot 2 = F_2 F_3$$
$$F_1^2 + F_2^2 + F_3^2 = 1^2 + 1^2 + 2^2 = 6 = 2 \cdot 3 = F_3 F_4$$
$$F_1^2 + F_2^2 + F_3^2 + F_4^2 = 1^2 + 1^2 + 2^2 + 3^2 = 15 = 3 \cdot 5 = F_4 F_5$$
$$F_1^2 + F_2^2 + F_3^2 + F_4^2 + F_5^2 = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 40 = 5 \cdot 8 = F_5 F_6$$

"Almost" like powers of 2

$$\sum_{i=0}^{n} (2^i)^2 = \sum_{i=0}^{n} 4^i = \frac{4^{n+1} - 1}{3} = \frac{2}{3} 2^{n+1} - \frac{1}{3}$$
Proof By Induction

Notations

\[L(n) = F_1^2 + F_2^2 + \cdots + F_n^2 \]
\[R(n) = F_n F_{n+1} \]

The induction base: \(n = 1 \)

\[L(1) = F_1^2 = 1^2 = 1 = 1 \cdot 1 = F_1 F_2 = R(1) \]

The induction hypothesis: \(L(n - 1) = R(n - 1) \) for \(n > 1 \)

\[F_1^2 + F_2^2 + \cdots + F_{n-1}^2 = F_{n-1} F_n \]
The inductive step: \(L(n) = R(n) \) for \(n > 1 \)

\[
L(n) = F_1^2 + F_2^2 + \cdots + F_{n-1}^2 + F_n^2 \\
= L(n-1) + F_n^2 \\
= R(n-1) + F_n^2 \quad (\ast \text{the induction hypothesis} \ast) \\
= F_{n-1}F_n + F_n^2 \\
= F_n(F_{n-1} + F_n) \\
= F_nF_{n+1} \\
= R(n)
\]
Proof Without Words: \[\sum_{i=1}^{n} F_i^2 = F_n F_{n+1} \]
The Golden Ratio

Definition
- The golden ratio ϕ is the positive root of the equation $x^2 = 1 + x$

Formula
$$\phi = \frac{1 + \sqrt{5}}{2} = 1.618 \ldots$$

The fractional part of the Golden Ratio is its reciprocal
$$\phi^2 = 1 + \phi \implies \phi = \frac{1}{\phi} + 1 \implies \phi - 1 = \frac{1}{\phi} = 0.618 \ldots$$
The Golden Ratio

Online Resources

- Visual computation:
 https://www.youtube.com/watch?v=yeHDXdv5KH4

- General in 3 minutes:
 https://www.youtube.com/watch?v=fmaVqkR0ZXg

- General in 6 minutes:
 https://www.youtube.com/watch?v=6nSfJEDZ_WM

Art and music

- The Mona Lisa
 https://www.youtube.com/watch?v=jxKYFBtdsqU

- Encoding the Fibonacci Sequence into music
 https://www.youtube.com/watch?v=IGJeG0w8TzQ
The Kepler Triangle

\[\phi^2 = 1^2 + (\sqrt{\phi})^2 = 1 + \phi \]
The Golden ratio as a Function of Infinite 1’s

First infinite expressions for ϕ

$$\phi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cdots}}}$$

Proof

- Define $F = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cdots}}$

$$F = 1 + \cfrac{1}{F} \implies F = \phi$$
The Golden ratio as a Function of Infinite 1’s

Second infinite expressions for ϕ

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$$

Proof

- Define $S = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$

\[
\begin{align*}
S &= \sqrt{1 + S} \quad \Rightarrow \quad S^2 = 1 + S \\
&\quad \Rightarrow \quad S = \phi
\end{align*}
\]
Solving the Equation $x = 1 + \frac{1}{x}$

The iteration method: $\phi = 1.618033988749894848204586834 \ldots$

- Initially: $x_1 = 1$
- Iteratively: $x_i = 1 + \frac{1}{x_{i-1}}$ for $i > 1$
 * $x_2 = 1 + \frac{1}{1} = 2$
 * $x_3 = 1 + \frac{1}{2} = \frac{3}{2} = 1.5$
 * $x_4 = 1 + \frac{1}{3/2} = \frac{5}{3} \approx 1.667$
 * $x_5 = 1 + \frac{1}{5/3} = \frac{8}{5} = 1.6$
 * $x_6 = 1 + \frac{1}{8/5} = \frac{13}{8} = 1.625$
 * $x_7 = 1 + \frac{1}{13/8} = \frac{21}{13} \approx 1.61538461538$
 * $x_8 = 1 + \frac{1}{21/13} = \frac{34}{21} \approx 1.61904761905$
 * $x_9 = 1 + \frac{1}{34/21} = \frac{55}{34} \approx 1.61764705882$
 * $x_{20} = 1 + \frac{1}{6765/4181} = \frac{10946}{6765} \approx 1.61803399852$
Solving the Equation $x = 1 + \frac{1}{x}$

$x_1 = 1$

$x_2 = 1 + \frac{1}{1}$

$x_3 = 1 + \frac{1}{1 + \frac{1}{1}}$

$x_4 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$

$x_5 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$

$x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}}}$
Solving the Equation \(x = 1 + \frac{1}{x} \)

Theorem

- \(x_n = \frac{F_{n+1}}{F_n} \) for \(n \geq 1 \)

Proof By Induction

- Induction Base for \(n = 1 \): \(x_1 = 1 = \frac{1}{1} = \frac{F_2}{F_1} \)
- For \(n > 1 \), assume correctness for \(x_{n-1} \) prove correctness for \(x_n \)

\[
\begin{align*}
 x_n &= 1 + \frac{1}{x_{n-1}} \\
 &= 1 + \frac{1}{F_{n}/F_{n-1}} \\
 &= 1 + \frac{F_{n-1}}{F_n} \\
 &= \frac{F_n + F_{n-1}}{F_n} \\
 &= \frac{F_{n+1}}{F_n}
\end{align*}
\]

(* the induction hypothesis *)
Approximating ϕ with $\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdot \cdot \cdot}}}$

The first 3 digits of the fractional part of $\phi = 1.6180339887\ldots$

- Initially: $x_1 = \sqrt{1} = 1$
- Iteratively: $x_i = \sqrt{1 + x_{i-1}}$ for $i > 1$

 $\ast \ x_2 = \sqrt{1 + 1.000} = \sqrt{2.000} \approx 1.414$

 $\ast \ x_3 = \sqrt{1 + 1.414} = \sqrt{2.414} \approx 1.554$

 $\ast \ x_4 = \sqrt{1 + 1.554} = \sqrt{2.554} \approx 1.598$

 $\ast \ x_5 = \sqrt{1 + 1.598} = \sqrt{2.598} \approx 1.612$

 $\ast \ x_6 = \sqrt{1 + 1.612} = \sqrt{2.612} \approx 1.616$

 $\ast \ x_7 = \sqrt{1 + 1.616} = \sqrt{2.616} \approx 1.617$

 $\ast \ x_8 = \sqrt{1 + 1.617} = \sqrt{2.617} \approx 1.618$

 $\ast \ x_9 = \sqrt{1 + 1.618} = \sqrt{2.618} \approx 1.618$
The two roots of the equation \(x^2 - x - 1 = 0 \)

- The positive root: \(\phi = \frac{1+\sqrt{5}}{2} \approx 1.618 \)
- The negative root: \(\hat{\phi} = \frac{1-\sqrt{5}}{2} = 1 - \phi \approx -0.618 \)

Fibonacci numbers as a function of the Golden Ratio

\[
F_k = \frac{\phi^k - \hat{\phi}^k}{\sqrt{5}} \\
F_{k+1} = \phi F_k + \hat{\phi}^k \\
|\hat{\phi}| < 1 \implies F_k = \frac{\phi^k}{\sqrt{5}} \text{ rounded to the nearest integer} \\
\frac{F_{k+1}}{F_k} \rightarrow \phi \text{ when } k \rightarrow \infty
\]