Discrete Structures: Recursion

Amotz Bar-Noy

Department of Computer and Information Science
Brooklyn College
Recursion

Definition

- Recursion occurs when “something” is defined in terms of itself or of its type.

Focus

- **Recursive formulas** in mathematics.
- **Recursive programs** in computer science.

Illustrations

- [Image 1](https://storage.googleapis.com/algodailyrandomassets/curriculum/recursion/cover.jpg)
- [Image 2](https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/SierpinskiTriangle.svg/887px-SierpinskiTriangle.svg.png)
- [Image 3](https://theburningmonk.com/wp-content/uploads/2017/08/recursion-01.png)
Recursive Formulas

Definition

- A recursive formula is defined on the set of integers greater than or equal to some number m (usually 0 or 1).
- The formula computes the n^{th} value based on some or all of the previous $n - 1$ values.

Goal

- Given initial values and a recursive formula, find its **closed-form expression** that does not depend on previous values.

Recursion and induction

- Usually proving the correctness of a **solution** (a closed-form expression) to a recursive formula is done by induction.
The Positive Integers

The recursive formula

\[N(n) = \begin{cases} 1 & \text{for } n = 1 \\ N(n - 1) + 1 & \text{for } n > 1 \end{cases} \]

The recursive pseudocode

function \(N(n) \) (* integer \(n \geq 1 \) *)
 if \(n = 1 \)
 then return (1)
 else return (\(N(n - 1) + 1 \))

The non-recursive pseudocode

function \(N(n) \) (* integer \(n \geq 1 \) *)
 \(k = 1 \)
 for \(i = 2 \) to \(n \)
 \(k = k + 1 \)
 return(\(k \))
The Positive Integers

The closed-form expression

\[N(n) = n \]

Proof by induction

- Induction base: \(N(1) = 1 \)
- Induction hypothesis: \(N(k) = k \) for all \(1 \leq k < n \)
- Inductive step for \(n \geq 2 \):

\[
N(n) = N(n - 1) + 1 \\
= (n - 1) + 1 \\
= n
\]
The Negative Integers

The recursive formula

\[N(n) = \begin{cases}
-1 & \text{for } n = 1 \\
N(n - 1) - 1 & \text{for } n > 1
\end{cases} \]

The recursive pseudocode

function \(N(n) \) (* integer \(n \geq 1 \) *)

if \(n = 1 \)
then return \((-1)\)
else return \((N(n - 1) - 1)\)

The non-recursive pseudocode

function \(N(n) \) (* integer \(n \geq 1 \) *)

\(k = -1 \)
for \(i = 1 \) to \(n \)
\(k = k - 1 \)
return \((k)\)
The Negative Integers

The closed-form expression

\[N(n) = -n \]

Proof by induction

- Induction base: \(N(1) = -1 \)
- Induction hypothesis: \(N(k) = -k \) for all \(1 \leq k < n \)
- Inductive step for \(n \geq 2 \):

\[
N(n) = N(n-1) - 1 \\
= -(n-1) - 1 \\
= -n
\]
A Generalization

The recursive formula

\[
T(n) = \begin{cases}
 b & \text{for } n = 0 \text{ and a real number } b \\
 T(n-1) + a & \text{for } n > 0 \text{ and a real number } a
\end{cases}
\]

The recursive pseudocode

function \(T(n) \) (* integer \(n \geq 0 \) and reals \(a \) and \(b \) *)

if \(n = 0 \)
 then return \((b)\)
else return \((T(n-1) + a)\)

The non-recursive pseudocode

function \(T(n) \) (* integer \(n \geq 0 \) and reals \(a \) and \(b \) *)

\[
t = b \\
\text{for } i = 1 \text{ to } n \\
 t = t + a \\
\text{return}(t)
\]
A Generalization

The closed-form expression

\[T(n) = b + an \]

Proof by induction

- Induction base: \(T(0) = b = b + a \cdot 0 \)
- Induction hypothesis: \(T(k) = b + ak \) for all \(0 \leq k < n \)
- Inductive step for \(n \geq 1 \):

\[
T(n) = T(n - 1) + a \\
= b + a(n - 1) + a \\
= b + an
\]
Special Cases

The recursive formula

\[T(n) = \begin{cases}
 b
 & \text{for } n = 0 \text{ and a real number } b \\
 T(n - 1) + a
 & \text{for } n > 0 \text{ and a real number } a
\end{cases} \]

The closed-form expression

\[T(n) = b + an \]

Examples

- **Non-negative integers:** \(b = 0 \land a = 1 \implies T(n) = n \)
- **Non-positive integers:** \(b = 0 \land a = -1 \implies T(n) = -n \)
- **Non-negative Even integers:** \(b = 0 \land a = 2 \implies T(n) = 2n \)
- **Positive Odd integers:** \(b = 1 \land a = 2 \implies T(n) = 2n + 1 \)
The recursive formula

\[P(n) = \begin{cases}
1 & \text{for } n = 0 \\
2P(n - 1) & \text{for } n \geq 1
\end{cases} \]

The recursive pseudocode

function \(P(n) \) (* integer \(n \geq 0 \) *)
\[
\begin{align*}
\text{if } n &= 0 \\
\text{then return } (1) \\
\text{else return } (2P(n - 1))
\end{align*}
\]

The non-recursive pseudocode

function \(P(n) \) (* integer \(n \geq 0 \) *)
\[
\begin{align*}
p &= 1 \\
\text{for } i &= 1 \text{ to } n \\
p &= 2 \cdot p \\
\text{return}(p)
\end{align*}
\]
Powers of Two

The closed-form expression

\[P(n) = 2^n \]

Proof by induction

- Induction base: \(P(0) = 1 = 2^0 \)
- Induction hypothesis: \(P(k) = 2^k \) for all \(0 \leq k < n \)
- Inductive step for \(n \geq 1 \):

\[
P(n) = 2P(n - 1)
= 2 \cdot 2^{n-1}
= 2^n
\]
Factorials

The recursive formula

\[F(n) = \begin{cases}
1 & \text{for } n = 0 \\
nF(n-1) & \text{for } n \geq 1
\end{cases} \]

The recursive pseudocode

function \(F(n) \) (* integer \(n \geq 0 \) *)

\[\text{if } n = 0 \]
\[\text{then return } (1) \]
\[\text{else return } (n \cdot F(n-1)) \]

The non-recursive pseudocode

function \(F(n) \) (* integer \(n \geq 0 \) *)

\[f = 1 \]
\[\text{for } i = 1 \text{ to } n \]
\[f = i \cdot f \]
\[\text{return } (f) \]
Factorials

The closed-form expression

\[F(n) = n! \]

Proof by induction

- Induction base: \(F(0) = 1 = 0! \)
- Induction hypothesis: \(F(k) = k! \) for all \(0 \leq k < n \)
- Inductive step for \(n \geq 1 \):

\[
F(n) = nF(n-1) \\
= n(n-1)! \\
= n!
\]
The \log_2 Function

The recursive formula

$$L(n) = \begin{cases}
0 & \text{for } n = 1 \\
L(n/2) + 1 & \text{for } n = 2^h \text{ and } h > 0
\end{cases}$$

The recursive pseudocode

```plaintext
function L(n) (* power of two integer $n = 2^h$ for $h \geq 0$ *)
    if $n = 1$
        then return (0)
    else return (L(n/2) + 1)
```

The non-recursive pseudocode

```plaintext
function L(n) (* power of two integer $n = 2^h$ for $h \geq 0$ *)
    $h = 0$
    while $n > 1$
        $n = n/2$ and $h = h + 1$
    return(h)
```
The \(\log_2 \) Function

The closed-form expression

\[L(n) = \log_2(n) \]

Proof by induction

- **Induction base:** \(L(1) = 0 = \log_2(1) \)
- **Induction hypothesis:** \(L(2^k) = k \) for all \(0 \leq k < \log_2(n) \)
- **Inductive step:** Assume \(n = 2^h \) for \(h > 0 \)

\[
\begin{align*}
L(n) &= L(2^h) \\
 &= L(2^{h-1}) + 1 \\
 &= \log_2(2^{h-1}) + 1 \\
 &= (h - 1) + 1 \\
 &= h \\
 &= \log_2(n)
\end{align*}
\]
The Sum $1 + 2 + \cdots + n$

The recursive formula

$$S(n) = \begin{cases}
0 & \text{for } n = 0 \\
S(n - 1) + n & \text{for } n \geq 1
\end{cases}$$

The recursive pseudocode

function $S(n)$ (* integer $n \geq 0$ *)

if $n = 0$

then return (0)

else return $(S(n - 1) + n)$

The non-recursive pseudocode

function $S(n)$ (* integer $n \geq 0$ *)

$s = 0$

for $i = 1$ to n

$s = s + i$

return (s)
The Sum $1 + 2 + \cdots + n$

The closed-form expression

$$S(n) = \frac{n(n+1)}{2}$$

Proof by induction

- Induction base: $S(0) = 0 = (0 \cdot 1)/2$
- Induction hypothesis: $S(k) = (k(k + 1))/2$ for all $0 \leq k < n$
- Inductive step for $n \geq 1$:

\[
S(n) = S(n-1) + n \\
= \frac{(n-1)n}{2} + n \\
= \frac{n^2 - n}{2} + \frac{2n}{2} \\
= \frac{n^2 + n}{2} \\
= \frac{n(n+1)}{2}
\]
The Sum $1 + 3 + \cdots + n$ For Odd n

The recursive formula

$$ S(n) = \begin{cases}
1 & \text{for } n = 1 \\
S(n-2) + n & \text{for odd } n > 1
\end{cases} $$

The recursive pseudocode

function $S(n)$ (* odd integer $n \geq 1$ *)

if $n = 1$

then return (1)

else return ($S(n-2) + n$)

The non-recursive pseudocode

function $S(n)$ (* odd integer $n \geq 1$ *)

$s = 0$

for $i = 1$ to n step 2

$s = s + i$

return(s)
The Sum \(1 + 3 + \cdots + n\) For Odd \(n\)

Small values of \(n\)

- \(n = 1\): \(S(1) = 1\)
- \(n = 3\): \(S(3) = S(1) + 3 = 1 + 3 = 4\)
- \(n = 5\): \(S(5) = S(3) + 5 = 4 + 5 = 9\)
- \(n = 7\): \(S(7) = S(5) + 7 = 9 + 7 = 16\)
- \(n = 9\): \(S(9) = S(7) + 9 = 16 + 9 = 25\)
The Sum $1 + 3 + \cdots + n$ For Odd n

The closed-form expression

$$S(n) = \left(\frac{n + 1}{2}\right)^2$$

Proof by induction

- Induction base: $S(1) = 1 = \left(\frac{1+1}{2}\right)^2$
- Induction hypothesis: $S(k) = \left(\frac{k+1}{2}\right)^2$ for all odd $1 \leq k < n$
The Sum $1 + 3 + \cdots + n$ For Odd n

Proof by induction: inductive step for odd $n > 1$

\[
S(n) = S(n - 2) + n
\]
\[
= \left(\frac{(n - 2) + 1}{2} \right)^2 + n
\]
\[
= \left(\frac{n - 1}{2} \right)^2 + \frac{4n}{4}
\]
\[
= \frac{n^2 - 2n + 1 + 4n}{4}
\]
\[
= \frac{n^2 + 2n + 1}{4}
\]
\[
= \frac{(n + 1)^2}{2^2}
\]
\[
= \left(\frac{n + 1}{2} \right)^2
\]

Amotz Bar-Noy (Brooklyn College)
A General Recursive Formula

Theorem
- Let \(a \) and \(b \) be real numbers.
- Let \(r \neq 1 \) be a positive real number.
- Assume

\[
T(n) = \begin{cases}
 b & \text{for } n = 0 \\
 r T(n-1) + a & \text{for } n \geq 1
\end{cases}
\]

- Then

\[
T(n) = b r^n + a \frac{r^n - 1}{r - 1}
\]
A General Recursive Formula

The recursive formula

\[T(n) = \begin{cases}
 b & \text{for } n = 0 \\
 rT(n - 1) + a & \text{for } n \geq 1
\end{cases} \]

Top-Down evaluation

\[
T(n) = rT(n - 1) + a \\
= r^2 T(n - 2) + ar + a \\
= r^3 T(n - 3) + ar^2 + ar + a \\
\vdots \\
= r^n T(0) + ar^{n-1} + ar^{n-2} + \cdots + ar + a \\
= br^n + a \sum_{i=0}^{n-1} r^i \\
= br^n + a \frac{r^n - 1}{r - 1}
\]
A General Recursive Formula

The recursive formula

\[
T(n) = \begin{cases}
 b & \text{for } n = 0 \\
 rT(n-1) + a & \text{for } n \geq 1
\end{cases}
\]

Bottom-Up evaluation

\[
\begin{align*}
T(0) &= b \\
T(1) &= rT(0) + a = br + a \\
T(2) &= rT(1) + a = br^2 + ar + a \\
T(3) &= rT(2) + a = br^3 + ar^2 + ar + a \\
& \vdots \\
T(n) &= br^n + a \sum_{i=0}^{n-1} r^i
\end{align*}
\]

\[
T(n) = br^n + a \frac{r^n - 1}{r - 1}
\]
First Special Case of the General Formula

Theorem

- Recursive formula: \(T(0) = b \) and \(T(n) = rT(n - 1) + a \)
- Closed-form expression: \(T(n) = br^n + a \frac{r^n - 1}{r - 1} \)

\(b = 1, \ a = 0, \ \text{and} \ r \neq 1 \)

- Recursive formula: \(T(0) = 1 \) and \(T(n) = rT(n - 1) \)
- Closed-form expression:

\[
T(n) = 1 \cdot r^n + 0 \cdot \frac{r^n - 1}{r - 1} = r^n
\]
Second Special Case of the General Formula

Theorem

Recursive formula: \(T(0) = b \) and \(T(n) = rT(n - 1) + a \)

Closed-form expression: \(T(n) = br^n + a \frac{r^n - 1}{r - 1} \)

\(b = 0, \ a = 1, \ \text{and} \ r = 2 \)

Recursive formula: \(T(0) = 0 \) and \(T(n) = 2T(n - 1) + 1 \)

Closed-form expression:

\[
T(n) = 0 \cdot r^n + 1 \cdot \frac{2^n - 1}{2 - 1} = 2^n - 1
\]
Third Special Case of the General Formula

Theorem

- Recursive formula: $T(0) = b$ and $T(n) = rT(n - 1) + a$
- Closed-form expression: $T(n) = br^n + a\frac{r^n-1}{r-1}$

$b = 0, \ a = 1/2, \ and \ r = 1/2$

- Recursive formula: $T(0) = 0$ and $T(n) = (1/2)T(n - 1) + 1/2$
- Closed-form formula:

\[
T(n) = 0 \cdot r^n + \frac{1}{2} \cdot \left(\frac{1}{2}\right)^n - 1 = \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1/2 - 1}
\]

\[
= 1 - \left(\frac{1}{2}\right)^n = 1 - 2^{-n}
\]
Tower of Hanoi

Definition by example

https://www.youtube.com/watch?v=5Wn4EboLrMM

General definition

- There are three pegs (rods) called A, B, and C and \(n \geq 1 \) disks of different sizes.
- Initially all the disks are located on peg A ordered from the largest at the bottom to the smallest at the top.
- A **legal move** takes any top disk and moves it to another peg as long as it is not placed on top of a smaller disk.
- **Goal:** Move the \(n \) disks from A to B using only legal moves.
- **Efficiency:** Move the disks with as few as possible legal moves.
Tower of Hanoi

Demo
- https://www.mathsisfun.com/games/towerofhanoi.html

Recursive solution for four disks
- https://www.youtube.com/watch?v=YstLjLCGmgg

General Recursive solution
- **Initial call:** Move $n \geq 1$ disks from A to B
- **Recursive base:** For $n = 1$ move the single disk from A to B
- **Recursive step:** Assume $k > 1$ disks are to be moved from peg X to peg Y for $X \neq Y$ and $\{X, Y, Z\} = \{A, B, C\}$:
 * Move the top $k - 1$ disks from X to $Z \notin \{X, Y\}$
 * Move the top disk from X to Y
 * Move the top $k - 1$ disks from Z to Y
Tower of Hanoi

Correctness: proof by induction

- **Induction base:** When \(n = 1 \), a largest top disk can be legally moved from a peg to an empty peg.

- **Induction hypothesis:** The smallest \(1 \leq k < n \) disks can be legally moved from a peg to any of the other two pegs.

- **Inductive step:**
 - The \(n - 1 \) smallest disks are legally moved from peg \(A \) to peg \(C \) by the induction hypothesis.
 - The largest disk is legally moved from peg \(A \) to the empty peg \(B \).
 - The \(n - 1 \) smallest disks are legally moved from peg \(C \) to peg \(B \) which has the largest disk by the induction hypothesis.
Tower of Hanoi

Number of moves

- Let $M(n)$ be the number of legal moves made by the recursive solution for $n \geq 1$ disks.
- Trivially, $M(1) = 1$ and by definition $M(0) = 0$.
- Recursively, $M(n) = 2M(n - 1) + 1$.
- By the generalized formula (second special case)

 $$M(n) = 2^n - 1$$
Binomial Coefficients: The Recursive Formula

Definition

\[\binom{n}{0} = \binom{n}{n} = 1 \quad \text{for } n \geq 0 \]

\[\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \text{for } n \geq 1 \text{ and } 1 \leq k \leq n-1 \]

Closed-form expression

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots2}
\]
Proof By Induction

Induction base for any \(n \geq 1 \) and \(k = 0 \) or \(k = n \):

\[
\binom{n}{0} = 1 = \frac{n!}{1 \cdot n!} = \frac{n!}{0! \cdot n!} = \frac{n!}{0! \cdot (n - 0)!},
\]

\[
\binom{n}{n} = 1 = \frac{n!}{n! \cdot 1} = \frac{n!}{n! \cdot 0!} = \frac{n!}{n! \cdot (n - n)!}.
\]

Induction hypothesis for \(1 \leq m < n \) and \(1 \leq h \leq m \):

\[
\binom{m}{h} = \frac{m!}{h!(m - h)!}.
\]
Proof By Induction

Inductive step for $n > 1$ **and** $0 < k < n$:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$= \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!}$$

$$= \frac{k(n-1)!}{k(k-1)! (n-k)!} + \frac{(n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{k(n-1)!}{k!(n-k)!} + \frac{(n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{k(n-1)! + (n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{(k + (n-k))(n-1)!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$
The Fibonacci Numbers

The sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …

The recursive definition

\[F_n = \begin{cases}
0 & \text{for } n = 0 \\
1 & \text{for } n = 1 \\
F_{n-1} + F_{n-2} & \text{for } n \geq 2
\end{cases} \]
The Fibonacci Numbers

The recursive pseudocode

function $F(n)$ (* integer $n \geq 2$ *)
 if $n = 0$ then return (0)
 if $n = 1$ then return (1)
 otherwise return ($F(n - 1) + F(n - 2)$)

The non-recursive pseudocode

function $F(n)$ (* integer $n \geq 2$ *)
 $F_0 = 0$
 $F_1 = 1$
 for $i = 2$ to n
 $F_i = F_{i-1} + F_{i-2}$
 return (F_n)
Fibonacci Numbers - The Original Problem

Story
- A young pair of rabbits (one of each sex) is placed on an island
- A pair of rabbits does not breed until they are 2 months old
- After they are two months old, each pair of rabbits produces another pair each month
- No rabbits ever die

Problem
- Find a recursive formula for the number of pairs of rabbits on the island after n months

Solution
- There are F_n pairs of rabbits on the island after n months
Online Resources

The original story

https://www.youtube.com/watch?v=sjQlW6cH3Ko

The Fibonacci’s soup

https://me.me/i/
todays-special-fibonacci-soup-ingredients-yesterdays-soup-the-day-before-20394428

Some basics

https://www.youtube.com/watch?v=ZC-d4dKTyKw
Additional Online Resources

Texts

- Math is Fun:
 https://www.mathsisfun.com/numbers/fibonacci-sequence.html

- The life and numbers of Fibonacci:
 https://plus.maths.org/content/life-and-numbers-fibonacci

- Wikipedia:
 https://en.wikipedia.org/wiki/Fibonacci_number

- Fibonacci Numbers and the Golden Section:
 http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

Videos

- The magic of Fibonacci numbers:
 https://www.youtube.com/watch?v=SjSHVDFXHQ4&vl=ja

- The Fibonacci Sequence and Experiences with Learning:
 https://www.youtube.com/watch?v=uk6CLffEuZM
Three Consecutive Fibonacci Numbers

Identity for $n \geq 1$

$$F_{n-1}F_{n+1} = F_n^2 + (-1)^n$$

Correctness for small n

$$F_0F_2 = 0 \cdot 1 = 1^2 - 1 = F_1^2 + (-1)^1$$
$$F_1F_3 = 1 \cdot 2 = 1^2 + 1 = F_2^2 + (-1)^2$$
$$F_2F_4 = 1 \cdot 3 = 2^2 - 1 = F_3^2 + (-1)^3$$
$$F_3F_5 = 2 \cdot 5 = 3^2 + 1 = F_4^2 + (-1)^4$$
$$F_4F_6 = 3 \cdot 8 = 5^2 - 1 = F_5^2 + (-1)^5$$
$$F_5F_7 = 5 \cdot 13 = 8^2 + 1 = F_6^2 + (-1)^6$$
$$F_6F_8 = 8 \cdot 21 = 13^2 - 1 = F_7^2 + (-1)^7$$

“Almost” like integers and powers of 2

$$\left(n - 1 \right)\left(n + 1 \right) = n^2 - 1$$
$$2^{n-1} \cdot 2^{n+1} = (2^n)^2$$
Proof By Induction

Notations

\[L(n) = F_{n-1}F_{n+1} \]
\[R(n) = F_n^2 + (-1)^n \]

The induction base: \(n = 1 \)

\[L(1) = F_0F_2 = 0 \cdot 1 = 0 = 1 - 1 = F_1^2 + (-1)^1 = R(1) \]

The induction hypothesis: \(L(n - 1) = R(n - 1) \) for \(n > 1 \)

\[F_{n-2}F_n = F_{n-1}^2 + (-1)^{n-1} \]
\[F_{n-1}^2 = F_{n-2}F_n - (-1)^{n-1} \]
Proof By Induction

The inductive step: \(L(n) = R(n) \) for \(n > 1 \)

\[
L(n) = F_{n-1}F_{n+1} \\
= F_{n-1}(F_{n-1} + F_n) \\
= F_{n-1}^2 + F_{n-1}F_n \\
= F_{n-2}F_n - (-1)^{n-1} + F_{n-1}F_n \quad (\text{\textasteriskcentered the induction hypothesis \textasteriskcentered}) \\
= (F_{n-2} + F_{n-1})F_n - (-1)^{n-1} \\
= F_n^2 - (-1)^{n-1} \\
= F_n^2 + (-1)^n \\
= R(n)
\]
The Missing or the Extra Part Paradox

64 = 65?
- https://www.youtube.com/watch?v=QTxQDjGQh-0
- https://www.youtube.com/watch?v=ee0dksxkog0
- Explanation: http://yozh.org/2011/05/15/an-area-paradox/

More Missing Squares:
- https://www.youtube.com/watch?v=ExUV3GOTDqE
- https://www.youtube.com/watch?v=h_aRDto5lMU
- https://www.youtube.com/watch?v=eFw0878Ig-A

The Vanishing Square:
- https://www.youtube.com/watch?v=BqhuX52QEIa

The Infinite Chocolate:
- https://www.youtube.com/watch?v=dmBsPgPu0Wc
- https://www.youtube.com/watch?v=7Yo6mwSB1As
- https://www.youtube.com/watch?v=tf1YbDV0508
Sum of First n Fibonacci numbers

Identity for $n \geq 1$

$$\sum_{i=1}^{n} F_i = F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

Correctness for small n

- $F_1 = 1 = 1 = 2 - 1 = F_3 - 1$
- $F_1 + F_2 = 1 + 1 = 2 = 3 - 1 = F_4 - 1$
- $F_1 + F_2 + F_3 = 1 + 1 + 2 = 4 = 5 - 1 = F_5 - 1$
- $F_1 + F_2 + F_3 + F_4 = 1 + 1 + 2 + 3 = 7 = 8 - 1 = F_6 - 1$
- $F_1 + F_2 + F_3 + F_4 + F_5 = 1 + 1 + 2 + 3 + 5 = 12 = 13 - 1 = F_7 - 1$

“Almost” like powers of 2

$$\sum_{i=0}^{n} 2^i = 1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1$$
Proof By Induction

Notations

\[L(n) = F_1 + F_2 + \cdots + F_n \]
\[R(n) = F_{n+2} - 1 \]

The induction base: \(n = 1 \)

\[L(1) = F_1 = 1 = 2 - 1 = F_3 - 1 = R(1) \]

The induction hypothesis: \(L(n - 1) = R(n - 1) \) for \(n > 1 \)

\[F_1 + F_2 + \cdots + F_{n-1} = F_{n+1} - 1 \]
The inductive step: $L(n) = R(n)$ for $n > 1$

\[
L(n) = 1 + 1 + 2 + \cdots + F_{n-1} + F_n \\
= L(n-1) + F_n \\
= R(n-1) + F_n \\
= (F_{n+1} - 1) + F_n \\
= (F_n + F_{n+1}) - 1 \\
= F_{n+2} - 1 \\
= R(n)
\]
A Generalized Fibonacci Sequence

Definition

\[G_n = \begin{cases}
 a & \text{for } n = 0, \\
 b & \text{for } n = 1, \\
 G_{n-1} + G_{n-2} & \text{for } n \geq 2.
\end{cases} \]

Identity

\[\sum_{i=0}^{n} G_i = G_0 + G_1 + \cdots + G_n = G_{n+2} - G_1 = G_{n+2} - b \]

The Fibonacci sequence special case

\[\sum_{i=0}^{n} G_i = G_{n+2} - 1 \text{ for } a = 0 \text{ and } b = 1. \]
Proof by Induction (Sketch)

The inductive step: \(R(n) = L(n) \) for \(n > 1 \)

\[
G_{n+2} - G_1 = G_n + G_{n+1} - G_1 \\
= G_n + G_{n-1} + G_n - G_1 \\
= G_n + G_{n-1} + G_{n-2} + G_{n-1} - G_1 \\
= G_n + G_{n-1} + G_{n-2} + G_{n-3} + G_{n-2} - G_1 \\
\vdots \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_i + G_{i-1} + G_i - G_1 \\
\vdots \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_1 + G_0 + G_1 - G_1 \\
= G_n + G_{n-1} + G_{n-2} + \cdots + G_1 + G_0 \]

Amotz Bar-Noy (Brooklyn College)
Sum of First n Squares of Fibonacci numbers

Identity for $n \geq 1$

$$\sum_{i=1}^{n} F_i^2 = F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

Correctness for small n

$$F_1^2 = 1^2 = 1 = 1 \cdot 1 = F_1 F_2$$
$$F_1^2 + F_2^2 = 1^2 + 1^2 = 2 = 1 \cdot 2 = F_2 F_3$$
$$F_1^2 + F_2^2 + F_3^2 = 1^2 + 1^2 + 2^2 = 6 = 2 \cdot 3 = F_3 F_4$$
$$F_1^2 + F_2^2 + F_3^2 + F_4^2 = 1^2 + 1^2 + 2^2 + 3^2 = 15 = 3 \cdot 5 = F_4 F_5$$
$$F_1^2 + F_2^2 + F_3^2 + F_4^2 + F_5^2 = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 40 = 5 \cdot 8 = F_5 F_6$$

“Almost” like powers of 2

$$\sum_{i=0}^{n} (2^i)^2 = \sum_{i=0}^{n} 4^i = \frac{4^{n+1} - 1}{3} = \frac{2}{3} 2^n 2^{n+1} - \frac{1}{3}$$
Proof By Induction

Notations

\[L(n) = F_1^2 + F_2^2 + \cdots + F_n^2 \]
\[R(n) = F_n F_{n+1} \]

The induction base: \(n = 1 \)

\[L(1) = F_1^2 = 1^2 = 1 = 1 \cdot 1 = F_1 F_2 = R(1) \]

The induction hypothesis: \(L(n-1) = R(n-1) \) for \(n > 1 \)

\[F_1^2 + F_2^2 + \cdots + F_{n-1}^2 = F_{n-1} F_n \]
The inductive step: \(L(n) = R(n) \) for \(n > 1 \)

\[
L(n) = F_1^2 + F_2^2 + \cdots + F_{n-1}^2 + F_n^2 \\
= L(n-1) + F_n^2 \\
= R(n-1) + F_n^2 \\
= F_{n-1}F_n + F_n^2 \\
= F_n(F_{n-1} + F_n) \\
= F_nF_{n+1} \\
= R(n)
\]
Proof Without Words
The Golden Ratio

Definition
- The golden ratio is the positive root of the equation $x^2 = 1 + x$

Formula
$$\phi = \frac{1 + \sqrt{5}}{2} = 1.618\ldots$$

The Fractional Part of the Golden Ratio
$$\phi^2 = 1 + \phi \implies \phi = \frac{1}{\phi} + 1 \implies \phi - 1 = \frac{1}{\phi} = 0.618\ldots$$

Online Resources
- https://www.youtube.com/watch?v=fmaVqkR0ZXg
- https://www.youtube.com/watch?v=6nSfJEDZ_WM
The Kepler Triangle

$$\phi^2 = 1^2 + (\sqrt{\phi})^2$$
The Golden ratio as a Function of Infinite 1’s

Two infinite expressions for ϕ

$$\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$$

Proof I

- Define S as the middle part of the equation:

$$S^2 = 1 + S \implies S = \phi$$

Proof II

- Define F as the right side of the equation:

$$F = 1 + \frac{1}{F} \implies F = \phi$$
Solving the Equation \(x = 1 + \frac{1}{x} \)

The iteration method: \(\phi \approx 1.618033988749894848204586834 \)

- Initially: \(x_1 = 1 \)
- Iteratively: \(x_i = 1 + \frac{1}{x_{i-1}} \) for \(i > 1 \)
 * \(x_2 = 1 + \frac{1}{1} = 2 \)
 * \(x_3 = 1 + \frac{1}{2} = \frac{3}{2} = 1.5 \)
 * \(x_4 = 1 + \frac{1}{3/2} = \frac{5}{3} \approx 1.667 \)
 * \(x_5 = 1 + \frac{1}{5/3} = \frac{8}{5} = 1.6 \)
 * \(x_6 = 1 + \frac{1}{8/5} = \frac{13}{8} = 1.625 \)
 * \(x_7 = 1 + \frac{1}{13/8} = \frac{21}{13} \approx 1.61538461538 \)
 * \(x_8 = 1 + \frac{1}{21/13} = \frac{34}{21} \approx 1.61904761905 \)
 * \(x_9 = 1 + \frac{1}{34/21} = \frac{55}{34} \approx 1.61764705882 \)
 * \(x_{20} = 1 + \frac{1}{6765/4181} = \frac{10946}{6765} \approx 1.61803399852 \)
Solving the Equation $x = 1 + \frac{1}{x}$

$x_1 = 1$

$x_2 = 1 + \frac{1}{1}$

$x_3 = 1 + \frac{1}{1 + \frac{1}{1}}$

$x_4 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$

$x_5 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$

$x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots}}}}}$
Solving the Equation $x = 1 + \frac{1}{x}$

Theorem

$$x_n = \frac{F_{n+1}}{F_n}$$

Proof By Induction

- **Induction Base:** $x_1 = 1 = \frac{1}{1} = \frac{F_2}{F_1}$
- **Assume correctness for** x_{n-1}, prove correctness for x_n

\[
x_n = 1 + \frac{1}{x_{n-1}} \\
= 1 + \frac{1}{F_n/F_{n-1}} \\
= 1 + \frac{F_{n-1}}{F_n} \\
= \frac{F_n + F_{n-1}}{F_n} \\
= \frac{F_{n+1}}{F_n}
\]
The two roots of the equation $x^2 - x - 1 = 0$:

- The positive root: $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$
- The negative root: $\hat{\phi} = \frac{1 - \sqrt{5}}{2} = 1 - \phi \approx -0.618$

Fibonacci numbers as a function of the Golden Ratio

- $F_k = \frac{\phi^k - \hat{\phi}^k}{\sqrt{5}}$
- $F_{k+1} = \phi F_k + \hat{\phi}^k$
- $|\hat{\phi}| < 1 \implies F_k = \frac{\phi^k}{\sqrt{5}}$ rounded to the nearest integer