1. Write the decimal number \((40)_{10}\) in its binary (base-2) and its ternary (base-3) representations.

\[40 = 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 \implies (40)_{10} = (101000)_2 \]

\[40 = 3 \cdot 3^3 + 1 \cdot 3^2 + 1 \cdot 3^1 + 1 \cdot 3^0 \implies (40)_{10} = (1111)_3 \]

2. Write the twelve decimal numbers \((1)_{10}, (2)_{10}, \ldots, (12)_{10}\) in their base-6 representation.

\[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20 \]

3. Which number is larger \((212)_4\) or \((100110)_2\)?

\[(212)_4 = 2 \cdot 4^2 + 1 \cdot 4^1 + 2 \cdot 4^0 = 32 + 4 + 2 = 38 \]

\[(100110)_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 32 + 4 + 2 = 38 \]

4. In the base-14 system: \(A = 10, B = 11, C = 12\) and \(D = 13\). What is the decimal value of the number \((BAD)_{14}\)?

\[(BAD)_{14} = 11 \cdot 14^2 + 10 \cdot 14^1 + 13 \cdot 14^0 = 2156 + 140 + 13 = (2309)_{10} \]

5. Characterize all the base-2 numbers that are multiples of 2 (those numbers that are divisible by 2)?

Answer: A base-2 number \(x\) is a multiple of 2 if and only if its last digit is 0.

Generalization: Which base-\(b\) numbers are multiples of \(b\)?

Answer: A base-\(b\) number \(x\) is a multiple of \(b\) if and only if its last digit is 0. This is true because all the other digits of \(x\) add multiples of \(b^i\) for \(i \geq 1\) and therefore add multiples of \(b\) to the value of \(x\).

6. What happens to a base-3 number when a 1 is added after the last (least significant) digit?

Examples: 220 becomes 2201 and 1212 becomes 12121.

Answer: Let \(x\) be a base-3 number, then

\[(x1)_3 = 3x + 1\]

Generalization: What happens to a base-\(b\) number when a \(0 \leq c < b\) is appended at its end?

Answer: Let \(x\) be a base-\(b\) number, then

\[(xc)_b = bx + c\]