1. Identify the five components e, π, i, 1, and 0 that appear in the famous formula: $e^{\pi i} + 1 = 0$.

 (a) The additive identity: _______
 (b) The square root of -1: _______
 (c) The multiplicative identity: _______
 (d) The base of the natural logarithm: _______
 (e) The ratio of a circle’s circumference to its diameter: _______

2. Order the following six numbers in an increasing order: e, $\sqrt{2}$, ϕ, 1, π, 0 (ϕ is the golden ratio).

 ____ < ____ < ____ < ____ < ____ < ____

3. Let A be the set of all the prime numbers between 30 and 50. Let B be the set of all odd integers between 30 and 50 that are not of the form $3k + 1$ for some integer k. Find the following sets:

 (a) $A = $ __________________________
 (b) $B = $ __________________________
 (c) $A \cup B = $ __________________________
 (d) $A \cap B = $ __________________________

4. (a) Expand the following expressions:

 i. $(x + y)^2 =$ __________________________
 ii. $(x - y)^2 =$ __________________________
 iii. $(x + y)^3 =$ __________________________
 iv. $(x - y)^3 =$ __________________________
 v. $(x + y)^n =$ __________________________
 vi. $(x - y)^n =$ __________________________

 (b) Factor the following expressions:

 i. $x^2 - y^2 =$ __________________________
 ii. $x^3 - y^3 =$ __________________________
 iii. $x^3 + y^3 =$ __________________________
 iv. For any $n \geq 2$, $x^n - y^n =$ __________________________
 v. For odd $n \geq 3$, $x^n + y^n =$ __________________________
5. (a) Simplify the following expressions:
 i. \(x^n \times x^m = \)
 ii. \(x^n \times y^n = \)
 iii. \(\frac{\log_a(x^n)}{\log_a(x)} = \)
 iv. \(2 \log_a(\sqrt{x}) = \)

(b) Answer the following questions:
 i. If \(\log_a(y) = x \), then \(a^x = \)
 ii. If \(\log_a(x) + \log_a(y) = \log_a(z) \), then \(z = \)
 iii. If \(\log_a(x) - \log_a(y) = \log_a(z) \), then \(z = \)

6. (a) \(4! = \)
 (b) If \(n! = 120 \) then \(n = \)
 (c) If \(n! = 720 \) then \(n = \)
 (d) Simplify \(\frac{(n+1)!}{(n-1)!} = \)

7. (a) Solve the following two linear equations. Find the values of \(x \) and \(y \) as a function of the three constants \(a, b, c \).
 \[x + y = a \]
 \[bx + cy = 0 \]
 \(x = \)
 \(y = \)

 (b) What are the roots of the quadratic equation \(x^2 + bx = c \)?
 \(x_1 = \)
 \(x_2 = \)

8. When a fair coin is flipped, then both the probabilities of Head (H) and Tail (T) are 1/2. Four fair coins are flipped. What is the probability that
 (a) all the coins are the same (either all show T or all show H):
 (b) exactly one coin shows H while the other three coins show T:
 (c) exactly two coins show T and two coins show H:
9. (a) Answer the following two questions:
 i. Let T be a right-angled triangle with sides a, b, and c where c is the hypotenuse (the side opposite the right angle). Write c as a function of a and b.

 ii. Let T be a triangle in which one of its side is of length b. Let h be the length of the height that is perpendicular to the side b. What is the area of the triangle T?

(b) What is the sum of the degrees of all the inner angles of the following geometric shapes?
 i. Triangle: ________________________________
 ii. Square: ________________________________
 iii. Pentagon: ________________________________
 iv. Hexagon: ________________________________
 v. n-gon: ________________________________

(c) Let C be a circle whose radius is r and whose diameter is d.
 i. What is the circumference of C as a function of r? ________________________________
 ii. What is the circumference of C as a function of d? ________________________________
 iii. What is the area of C as a function of r? ________________________________
 iv. What is the area of C as a function of d? ________________________________

10. What is the value of c when each procedure terminates?

 (a) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 0$

 for $i = 1$ to n

 for $j = 1$ to n

 $c := c + 1$

 $c = ________________________________$

 (b) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 0$

 for $i = 1$ to n

 for $j = i$ to n

 $c := c + 1$

 $c = ________________________________$

 (c) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 1$

 for $i = 1$ to n

 $c := c \times 2$

 $c = ________________________________$

 (d) $f(n)$ (* $n \geq 1$ is a power of 2 integer *)

 $c = 0$

 while $n > 1$

 $n := n/2$

 $c := c + 1$

 $c = ________________________________$
11. Express the sum of the following sequences as a function of \(n \):

(a) \(1 + 2 + 3 + \cdots + n = \) ________________________________

(b) \(1 + 2 + 4 + 8 + \cdots + 2^n = \) ________________________________

(c) \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^n} = \) ________________________________

12. Order the following 8 functions by their growth from the slowest to the fastest when \(n \) tends to infinity:

\[n! ; \ n^2 ; \ \log(n) ; \ n ; \ 1 ; \ 2^n ; \ n^n ; \ \log \log(n) \]

___ < ___ < ___ < ___ < ___ < ___ < ___ < ___