1. The five components of the famous formula \(e^{\pi i} + 1 = 0 \) are:
 (a) The additive identity: 0
 (b) The square root of \(-1\): \(i \)
 (c) The multiplicative identity: 1
 (d) The base of the natural logarithm: \(e \)
 (e) The ratio of a circle’s circumference to its diameter: \(\pi \)

2. \(0 < 1 < \sqrt{2} = 1.414... < \phi = 1.618... < e = 2.718... < \pi = 3.141... \)

3. Let \(A \) be the set of all the prime numbers between 30 and 50. Let \(B \) be the set of all odd integers between 30 and 50 that are not of the form \(3k + 1 \) for some integer \(k \).
 (a) \(A = \{31, 37, 41, 43, 47\} \)
 (b) \(B = \{33, 35, 39, 41, 45, 47\} \)
 (c) \(A \cup B = \{31, 33, 35, 37, 39, 41, 43, 45, 47\} \)
 (d) \(A \cap B = \{41, 47\} \)

4. (a) i. \((x + y)^2 = x^2 + 2xy + y^2 \)
 ii. \((x - y)^2 = x^2 - 2xy + y^2 \)
 iii. \((x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \)
 iv. \((x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \)
 v. \((x + y)^n = \sum_{i=0}^{n} (\binom{n}{i})x^{n-i}y^i = x^n + nx^{n-1}y + \ldots + nxy^{n-1} + y^n \)
 vi. \((x - y)^n = \sum_{i=0}^{n} (-1)^i(\binom{n}{i})x^{n-i}y^i = x^n - nx^{n-1}y + \ldots \pm nxy^{n-1} \pm y^n \)
 (b) i. \(x^2 - y^2 = (x - y)(x + y) \)
 ii. \(x^3 - y^3 = (x - y)(x^2 + xy + y^2) \)
 iii. \(x^3 + y^3 = (x + y)(x^2 - xy + y^2) \)
 iv. \(x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \ldots + x^2y^{n-3} + xy^{n-2} + y^{n-1}) \)
 v. \(x^n + y^n = (x + y)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 - \ldots + x^2y^{n-3} - xy^{n-2} + y^{n-1}) \)
 only for odd \(n \).
5. (a) i. \(x^n \times x^m = x^{n+m} \)

 ii. \(x^n \times y^n = (xy)^n \)

 iii. \(\frac{\log_a(x^n)}{\log_a(x)} = n \)

 iv. \(2\log_a(\sqrt{x}) = \log_a(x) \)

 (b) i. If \(\log_a(y) = x \), then \(a^x = y \)

 ii. If \(\log_a(x) + \log_a(y) = \log_a(z) \), then \(z = xy \)

 iii. If \(\log_a(x) - \log_a(y) = \log_a(z) \), then \(z = x/y \)

6. (a) \(4! = 24 \)

 (b) \(5! = 120 \)

 (c) \(6! = 720 \)

 (d) \(\frac{(n+1)!}{(n-1)!} = n(n + 1) \)

7. (a) For the following 2 linear equations

 \[
 \begin{align*}
 x + y &= a \\
 bx + cy &= 0
 \end{align*}
 \]

 The values of \(x \) and \(y \) as a function of the three constants \(a, b, c \) are:

 \[
 x = \frac{ac}{c - b} \quad \text{and} \quad y = \frac{-ab}{c - b}
 \]

(b) The roots of the quadratic equation \(x^2 + bx = c \) (equivalently, \(x^2 + bx - c = 0 \)) are

 \[
 x_1 = \frac{-b + \sqrt{b^2 + 4c}}{2} \quad \text{and} \quad x_2 = \frac{-b - \sqrt{b^2 + 4c}}{2}
 \]

8. Four fair coins are flipped. The 16 possible outcomes are

 • HHHH, HHHT, HHTH, HHTT, HTHH, HTTH, HTHT, HTTT, Thhh, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT

 (a) The probability that all the coins show H or all the coins show T is \(\frac{2}{16} = \frac{1}{8} \)

 • HHHH and TTTT

 (b) The probability that exactly one coin shows H while the other three coins show T is \(\frac{4}{16} = \frac{1}{4} \)

 • HTTT, THTT, TTHT, and TTTH

 (c) The probability that exactly two coins show T and two coins show H is \(\frac{6}{16} = \frac{3}{8} \)

 • TTHH, THHT, HTHT, HTTH, HTHT, and HHTT
9. (a) i. Let T be a right-angled triangle with sides a, b, and c where c is the hypotenuse (the side opposite the right angle). Then
$$c^2 = a^2 + b^2 \implies c = \sqrt{a^2 + b^2}$$

ii. Let T be a triangle in which one of its side is of length b. Let h be the length of the height that is perpendicular to the side b. Then the area of the triangle T is
$$\frac{b \cdot h}{2}$$

(b) The sum of the degrees of all the inner angles of the following geometric shapes is
i. Triangle: 180
ii. Square: 360
iii. Pentagon: 540
iv. Hexagon: 720
v. n-gon: $180(n - 2)$

(c) Let C be a circle whose radius is r and whose diameter is d.
 i. The circumference of C as a function of r is $2\pi r$
 ii. The circumference of C as a function of d is πd
 iii. The area of C as a function of r is πr^2
 iv. The area of C as a function of d is $\frac{\pi d^2}{4}$

10. (a) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 0$

 for $i = 1$ to n do

 for $j = 1$ to n do

 $c := c + 1$

 $\implies c = n^2$

(b) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 0$

 for $i = 1$ to n do

 for $j = i$ to n do

 $c := c + 1$

 $\implies c = n + (n - 1) + (n - 2) + \cdots + 1 = \frac{n(n+1)}{2}$

(c) $f(n)$ (* $n \geq 1$ is an integer *)

 $c = 1$

 for $i = 1$ to n do

 $c := c \times 2$

 $\implies c = 2^n$

(d) $f(n)$ (* $n \geq 1$ is a power of 2 integer *)

 $c = 0$

 while $n > 1$ do

 $n := n/2$

 $c := c + 1$

 $\implies c = \log_2(n)$
11. (a) \[1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \]
(b) \[1 + 2 + 4 + 8 + \cdots + 2^n = 2^{n+1} - 1 \]
(c) \[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n} \]

12. The following functions are ordered (left to right) by their growth from the slowest to the fastest when \(n \) tends to infinity:

\[
1 < \log \log(n) < \log(n) < n < n^2 < 2^n < n! < n^n
\]