1. Identify the five components e, π, i, 1, and 0 that appear in the famous formula: $e^{\pi i} + 1 = 0$.

 (a) The additive identity: _____
 (b) The square root of -1: _____
 (c) The multiplicative identity: _____
 (d) The base of the natural logarithm: _____
 (e) The ratio of a circle's circumference to its diameter: _____

2. Order the following five numbers in an increasing order: $e, \sqrt{2}, 1, \pi, 0$

 ____ < ____ < ____ < ____ < ____

3. (a) Expand $(x + y)^2 =$ __________________________
 (b) Expand $(x - y)^2 =$ __________________________
 (c) Factor $x^2 - y^2 =$ __________________________

4. (a) Simplify $x^n \times x^m =$ __________________________
 (b) Simplify $x^n \times y^n =$ __________________________
 (c) If $\log_a(y) = x$, then $a^x =$ __________________________
 (d) If $\log_a(x) + \log_a(y) = \log_a(z)$, then $z =$ __________________________

5. (a) $4! =$ __________________________
 (b) Simplify $\frac{(n+1)!}{n!} =$ __________________________

6. (a) Solve the following two linear equations. Find the values of x and y.

 \[
 \begin{align*}
 x + y &= 20 \\
 2x - 3y &= 5 \\
 \end{align*}
 \]

 $x =$ __________________________ $y =$ __________________________

 (b) What are the two roots of the quadratic equation $x^2 - 2x - 15 = 0$?

 $x_1 =$ __________________________ $x_2 =$ __________________________
7. When a fair coin is flipped, then both the probabilities of Heads (H) and Tails (T) are 1/2. Three fair coins are flipped. What is the probability that

(a) all the coins show H: ________________________________

(b) exactly one coin shows H while the other two coins show T: __________________________

8. (a) Let T be a right-angled triangle with sides a, b, and c where c is the hypotenuse (the side opposite the right angle). Write c as a function of a and b.

(b) What is the sum of the degrees of all the inner angles of the following geometric shapes?
 i. Triangle: ________________________________
 ii. Square: ________________________________

(c) Let C be a circle whose radius is r.
 i. What is the circumference of C as a function of r? ________________________________
 ii. What is the area of C as a function of r? ________________________________

9. What is the value of c when each procedure terminates?

 (a) $f(n)$ (* $n > 0$ is an integer number *)
 \[
 c = 0 \\
 \text{for } i = 1 \text{ to } n \text{ do} \\
 \quad \text{for } j = 1 \text{ to } n \text{ do} \\
 \quad \quad c := c + 1 \\
 c = ________________________________
 \]

 (b) $f(n)$ (* $n > 0$ is an integer number *)
 \[
 c = 1 \\
 \text{for } i = 1 \text{ to } n \text{ do} \\
 \quad c := c \times 2 \\
 c = ________________________________
 \]

10. Order the following functions from the slowest to the fastest when n tends to infinity:

\[
\begin{align*}
 n^2 & ; \quad \log(n) & ; \quad n & ; \quad 2^n \\
\end{align*}
\]

____ < ____ < ____ < ____