Discrete Structures

Algorithms Practice Problems: Solutions
1. Fill in the following table with one of the three: \(O, \, \Omega, \, \Theta. \)

 Remark: If \(f = \Theta(g) \) then \(f = O(g) \) and \(f = \Omega(g) \) are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>(f(n))</th>
<th>???</th>
<th>(g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(n)</td>
<td>(O)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>b</td>
<td>(n^2)</td>
<td>(\Omega)</td>
<td>(n)</td>
</tr>
<tr>
<td>c</td>
<td>(2n)</td>
<td>(\Theta)</td>
<td>(5n)</td>
</tr>
<tr>
<td>d</td>
<td>(1000000n)</td>
<td>(\Theta)</td>
<td>((1/100000)n)</td>
</tr>
<tr>
<td>e</td>
<td>(\log_2(n))</td>
<td>(O)</td>
<td>(\log_2^3(n))</td>
</tr>
<tr>
<td>f</td>
<td>(\log_2(n))</td>
<td>(\Theta)</td>
<td>(\log_{10}(n))</td>
</tr>
<tr>
<td>g</td>
<td>(n \log_2(n))</td>
<td>(\Omega)</td>
<td>(n/\log_2(n))</td>
</tr>
<tr>
<td>h</td>
<td>(2^n)</td>
<td>(\Omega)</td>
<td>(n^{100})</td>
</tr>
<tr>
<td>i</td>
<td>(2^n)</td>
<td>(O)</td>
<td>(3^n)</td>
</tr>
<tr>
<td>j</td>
<td>(2^n)</td>
<td>(O)</td>
<td>(n!)</td>
</tr>
</tbody>
</table>

2. Which of the following 10 functions are \(O(n) \)? Which are \(\Omega(n) \)? Which are \(\Theta(n) \)?

 Remark: If \(f = \Theta(n) \) then \(f = O(n) \) and \(f = \Omega(n) \) are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>(f(n))</th>
<th>???</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(2^n)</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>b</td>
<td>(n^2)</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>c</td>
<td>(2n)</td>
<td>(\Theta)</td>
</tr>
<tr>
<td>d</td>
<td>(n/\log_2(n))</td>
<td>(O)</td>
</tr>
<tr>
<td>e</td>
<td>(\log_2(n))</td>
<td>(O)</td>
</tr>
<tr>
<td>f</td>
<td>(100 \log_2(n) \log_2(n))</td>
<td>(O)</td>
</tr>
<tr>
<td>g</td>
<td>(n \log_2(n))</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>h</td>
<td>(10^{10}n/100^{100})</td>
<td>(\Theta)</td>
</tr>
<tr>
<td>i</td>
<td>(n^p)</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>j</td>
<td>(n!)</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

3. Match the following 8 functions as 4 pairs: if \(f(n) \) is paired with \(g(n) \) then \(f(n) = \Theta(g(n)) \).

 \[2^{n+1}; \, \frac{n}{\log_2(n^2)}; \, \frac{n^2}{2^n}; \, \log_2(n); \, 100n^2 - 500n; \, \log(2^n) \]

 Answer:

 \[
 \begin{align*}
 \log_2(n^2) &= 2 \log_2(n) & \Rightarrow \log_2(n^2) &= \Theta(\log_2(n)) \\
 \log_2(2^n) &= n \log_2(2) = n & \Rightarrow \log_2(2^n) &= \Theta(n) \\
 100n^2 - 500n &= \Theta(100n^2) & \Rightarrow 100n^2 - 500n &= \Theta(n^2) \\
 2^{n+1} &= 2 \cdot 2^n & \Rightarrow 2^{n+1} &= \Theta(2^n)
 \end{align*}
 \]
4. Let \(P \) be a problem whose input is an array of size \(n \) for \(n \geq 1 \). Order the following ten algorithms from the most efficient to the least efficient.

- Algorithm \(A \) solves \(P \) with complexity \(\Theta(n) \).
- Algorithm \(B \) solves \(P \) with complexity \(\Theta(2^n) \).
- Algorithm \(C \) solves \(P \) with complexity \(\Theta(n \log(n)) \).
- Algorithm \(D \) solves \(P \) with complexity \(\Theta(n!) \).
- Algorithm \(E \) solves \(P \) with complexity \(\Theta(n^2) \).
- Algorithm \(F \) solves \(P \) with complexity \(\Theta(1) \).
- Algorithm \(G \) solves \(P \) with complexity \(\Theta(n^n) \).
- Algorithm \(H \) solves \(P \) with complexity \(\Theta(n^{100}) \).
- Algorithm \(I \) solves \(P \) with complexity \(\Theta(\log(n)) \).
- Algorithm \(J \) solves \(P \) with complexity \(\Theta(\sqrt[n]{n}) \).

Answer: The following is the hierarchy among the ten functions:

\[
1 = o(\log(n)) = o(\sqrt{n}) = o(n) = o(n \log(n)) = o(n^2) = O(n^{100}) = o(2^n) = o(n!) = o(n^n)
\]

Therefore, using \(X < Y \) to indicate that algorithm \(X \) is more efficient than algorithm \(Y \), it follows that the order among the ten algorithms from the most efficient one to the least efficient one is as follows:

\[
F < I < J < A < C < E < H < B < D < G
\]

5. For each of the following 4 parts, give an example of a function that satisfies the criteria or state that none exist.

(a) A function that is \(O(n/2) \) and also \(\Omega(2n) \).

Answer: Both \(n/2 = \Theta(n) \) and \(2n = \Theta(n) \). Therefore, \(n = O(n/2) \) and \(n = \Omega(2n) \).

(b) A function that is both \(\Omega(10n) \) and \(O(n^2/100) \).

Answer: Observe that \(10n = o(n^2/100) \), \(10n = \Theta(n) \), and \(n^2/100 = \Theta(n^2) \). Therefore, any function that is \(\Omega(n) \) and \(O(n^2) \) is a correct answer. In particular, both \(n \) and \(n^2 \) are correct answers. But also \(n \log_2(n), \sqrt{n}, \) and \(n/\log_2(n) \) are correct answers. In fact, more accurately, the latter three functions are \(\omega(2n) \) and \(o(n/2) \).

(c) A function that is \(O(5n) \) but not \(\Theta(n/3) \).

Answer: Such a function must be \(O(n) \) but not \(\Theta(n) \) and as a result it must be \(o(n) \). The functions \(\sqrt{n} \) and \(\log(n) \) are two examples.

(d) A function that is \(\Omega(2^n) \) but not \(\Theta(2^n) \).

Answer: Such a function must be \(\omega(n) \). The functions \(3^n, n!, \) and \(n^n \) are three examples.

6. A problem \(P \) has an **upper bound** complexity \(O(n^2) \) and a **lower bound** complexity \(\Omega(n) \).

(a) Could someone design an algorithm that solves the problem whose complexity is \(n^3 \)?

Answer: Yes because \(n^3 = \Omega(n) \) and it is always possible to design inefficient algorithms.

(b) Could someone design an algorithm that solves the problem whose complexity is \(0.5n \)?

Answer: Yes because \(0.5n = \Theta(n) \) and therefore \(0.5n = O(n^2) \) and \(0.5n = \Omega(n) \).

(c) Could someone design an algorithm that solves the problem whose complexity is \(100\log(n) \)?

Answer: No because \(100\log(n) = o(n) \) and as such \(100\log(n) \neq \Omega(n) \).
7. Express the value of \(c \) when each of the following procedures terminates with the \(\Theta \)-notation.

Bonus: Try to find then exact value of \(c \) when each of the following procedures terminates.

(a) \(f(n) \) (* \(n = k^2 \) is a positive square integer *)

\[
\text{c} = 0 \\
\text{for} \ i = 1 \ \text{to} \ n \ \text{do} \\
\quad \text{if} \ i \text{ is a square number} \\
\quad \quad \text{then} \ c := c + 1
\]

Answer: \(c = \sqrt{n} = \Theta(n^{1/2}) \).

Explanation: \(c \) is incremented only when \(i \) is a square number. That is, for \(n = k^2 \), \(c \) is incremented when \(i = 1, 4, 9, \ldots, (k - 1)^2, k^2 \). The final value of \(c \) is \(k = \sqrt{n} \) because there are exactly \(k \) square integers between 1 and \(k^2 \).

(b) \(f(n) \) (* \(n > 1000 \) is a power of 2 *)

\[
\text{c} = 0 \\
\text{while} \ n > 512 \ \text{do} \\
\quad n := n/2 \\
\quad c := c + 1
\]

Answer: \(\log_2 n - 9 = \Theta(\log n) \).

Explanation: Assume \(n = 2^k \). Since \(n > 1000 \) it follows that \(k \geq 10 \). Each time \(c \) is incremented by 1, \(n \) is divided by 2. Therefore, the values of \(n \) are: \(2^k, 2^{k-1}, \ldots, 2^9 \). Once \(n = 2^9 \) the while loop stops because \(512 = 2^9 \). Therefore, \(c \) is incremented \(k - 9 \) times. The answer is \(\log_2 n - 9 \) because \(k = \log_2 n \).

8. Consider the following procedure:

\(f(x, y) \) (* a positive multiple of 3 integer \(x \) and a positive integer \(y \) *)

\[
\text{c} = 0 \\
\text{for} \ i = 1 \ \text{to} \ x/3 \ \text{do} \\
\quad \text{for} \ j = 1 \ \text{to} \ 6y^2 \ \text{do} \\
\quad \quad \text{then} \ c := c + 1
\]

(a) As a function of \(x \) and \(y \), what is the exact value of \(c \) when the program terminates?

Answer: The variable \(c \) is incremented \((x/3)(6y^2) \) times. Therefore, when the program terminated \(c = 2xy^2 \).

(b) Define \(x \) and \(y \) as functions of \(n \) such that \(c = \Theta(n^3) \) when the program terminates.

Answer: When \(n = 2x \) and therefore \(x = n/2 \) and \(y = n \), by part (a) the program terminates with \(c = 2xy^2 = 2(n/2)(n^2) = n^3 \). Trivially, \(n^3 = \Theta(n^3) \). This can be generalized for any \(x = \Theta(n) \) and \(y = \Theta(n) \).

There are infinitely many other answers. For example, \(x = \Theta(n^2) \) and \(y = \Theta(\sqrt{n}) \).

Describe an efficient algorithm that finds, if it exists, an index $1 \leq i \leq n$ such that $A[i] = i$. What is the complexity of the algorithm?

A trivial linear complexity algorithm: For all indices $1 \leq i \leq n$, check if $A[i] = i$. If such an index is found, return it. Otherwise, after learning that $A[n] \neq n$, return a message that such an index does not exist.

Algorithm $\mathcal{X}(A)$:

```plaintext
for $i := 1$ to $n$ do
    if $A[i] = i$ then return($i$)
end for
return("$A[i] \neq i$ for all indices $1 \leq i \leq n$ in $A$")
```

Algorithm \mathcal{X} is correct because by inspecting all the n indices in A, it cannot miss, if it exists, an index i for which $A[i] = i$.

The complexity of algorithm \mathcal{X} is $\Theta(n)$ because in the worst-case the algorithm needs to examine all the n entries in the array with complexity $\Theta(1)$ for each entry and $n \cdot \Theta(1) = \Theta(n)$.

Remark: Algorithm \mathcal{X} is correct with the same linear complexity even if the array is not sorted.

Observation: $A[i+1] - (i+1) \geq A[i] - i$ for $1 \leq i < n$.

A linear complexity algorithm with $\Theta(\log(n))$ comparisons: Define an array B such that $B[i] = A[i] - i$ for $1 \leq i \leq n$. It follows that if $B[i] = 0$ for some $1 \leq i \leq n$ then $A[i] = i$. The above observation implies that $B[1] \leq B[2] \leq \cdots \leq B[n]$. Use Binary-Search to find if 0 appears in the array B. Return the index i if there exists $1 \leq i \leq n$ such that $B[i] = 0$. Otherwise return the message $A[i] \neq i$ for all $1 \leq i \leq n$.

Algorithm $\mathcal{Y}(A)$:

```plaintext
for $i := 1$ to $n$ do $B[i] := A[i] - i$
$i := \text{Binary-Search}(B, 0)$
if $A[i$ then return($i$)
else return("$A[i] \neq i$ for all indices $1 \leq i \leq n$ in $A$")
```

By definition of the array B, it follows that if $B[i] = 0$ for some $1 \leq i \leq n$ then $A[i] = i$. Since B is sorted, the Binary-Search procedure finds the smallest index i such that $B[i] = 0$. On the other hand, if 0 is not in B then the Binary-Search procedure returns an index i for which $B[i] \neq 0$ and therefore $A[i] \neq i$. In this case, algorithm \mathcal{Y} returns a negative message. Both arguments prove that algorithm \mathcal{Y} is correct.

Algorithm \mathcal{Y} is using $\Theta(\log(n))$ comparisons which is the complexity of the Binary-Search procedure. However, the overall complexity of the algorithm is $\Theta(n)$ since the for loop that defines the array B has n iterations.

A $\Theta(\log(n))$-complexity algorithm: In fact, there is no need for array B. The comparison $B[i] = 0$ is equivalent to the comparison $A[i] = i$. Therefore, the Binary-Search procedure can be modified to run directly on the array A.

Algorithm $\mathcal{Z}(A)$:

```plaintext
$\ell := 1$ and $u := n$
while $\ell < u$ do
    $m := \left\lfloor \frac{u + \ell}{2} \right\rfloor$
    if $A[m] > m$ then $u := m$
    else $\ell := m + 1$
if $A[\ell] = \ell$ then return($\ell$)
else return("$A[i] \neq i$ for all indices $1 \leq i \leq n$ in $A$")
```

Algorithm \mathcal{Z} is correct because it is equivalent to algorithm \mathcal{Y}.

The while loop in algorithm \mathcal{Z} has at most $\lceil \log_2(n) \rceil$ iterations the same number of iterations that the Binary-Search procedure has. The complexity of algorithm \mathcal{Z} is $\Theta(\log(n))$ since each iteration has a $\Theta(1)$-complexity and $\Theta(\log(n)) \cdot \Theta(1) = \Theta(\log(n))$.
10. For \(n \geq 1 \), let \(A \) be an array of size \(n \) for which the first \(k \) entries contain positive integers and the rest of the array is all zeros. The value of \(n \) is \textit{known} but the value of \(k \), which can be any number between 0 and \(n \), is \textit{unknown}.

\textbf{Examples:}
- \([34, 13, 21, 0, 0, 0, 0, 0]: k = 3 \) in this array of length 8.
- \([0, 0, 0, 0, 0, 0, 0, 0]: k = 0 \) in this array of length 7.
- \([55, 8, 34, 13, 21, 89]: k = 6 \) in this array of length 6.

Describe an efficient algorithm that determines the value of \(k \) which is the number of positive integers in \(A \). What is the complexity of the algorithm?

\textbf{A trivial linear complexity algorithm:} Scan the array starting with the first entry in the array until either finding a zero or reaching the end of the array.

Algorithm \(\mathcal{X}(A) \):
\[
\begin{align*}
&k := 0 \\
&\text{while (} k < n \text{ and } (A[k+1] > 0) \text{ do} \\
&\quad k := k + 1 \\
&\text{return}(k)
\end{align*}
\]

Algorithm \(\mathcal{X} \) is correct because by inspecting all the \(n \) indices in \(A \), the algorithm identifies the last non-zero entry if it exists or returns 0 if \(A \) contains only zeros.

The complexity of algorithm \(\mathcal{X} \) is \(\Theta(n) \) because in the worst case the algorithm needs to examine all the \(n \) entries in the array with complexity \(\Theta(1) \) for each entry and \(n \cdot \Theta(1) = \Theta(n) \).

\textbf{A \(\Theta(\log n) \)-complexity algorithm:} Run the Binary-Search procedure to find the last zero in the array \(A \). The rules for the binary-search are that if \(A[i] = 0 \) then it must be the case that \(k < i \) while if \(A[i] > 0 \) it must be the case that \(k \geq i \).

Algorithm \(\mathcal{Y}(A) \):
\[
\begin{align*}
&A[0] := 1 \\
&\ell := 0 \\
&r := n \\
&\text{while (} \ell < r \text{ do} \\
&\quad m := \left\lfloor \frac{\ell + r}{2} \right\rfloor \\
&\quad \text{if } A[m] = 0 \\
&\qquad \text{then } r := m \\
&\qquad \text{else } \ell := m + 1 \\
&\text{return}(\ell)
\end{align*}
\]

Algorithm \(\mathcal{Y} \) is correct because the binary-search will find the last appearance of a positive integer in \(A \) which always exists after defining \(A[0] = 1 \).

The number of iterations in algorithm \(\mathcal{Y} \) is \(\Theta(\log(n + 1)) = \Theta(\log(n)) \) which is the complexity of the Binary-Search procedure on an array of length \(n + 1 \). Consequently, the complexity of algorithm \(\mathcal{Y} \) is \(\Theta(\log(n)) \) since each iteration has a \(\Theta(1) \)-complexity and \(\Theta(\log(n)) \cdot \Theta(1) = \Theta(\log(n)) \).

Describe an efficient algorithm that finds the number of times \(k \) appears in the array. What is the complexity of the algorithm?

A trivial linear complexity algorithm: Count the number of indices for which \(A[i] = k \) by scanning the whole array.

Algorithm \(\mathcal{X}(A) \):

\[
\begin{align*}
&\text{Count} := 0 \\
&\text{for } i := 1 \text{ to } n \text{ do} \\
&\quad \text{if } A[i] = k \\
&\quad \quad \text{then } \text{Count} := \text{Count} + 1 \\
&\text{return} (“k appears Count times in A”)
\end{align*}
\]

Algorithm \(\mathcal{X} \) is correct because it examines all the integers in the array \(A \).

There are \(n \) iterations of the for loop in algorithm \(\mathcal{X} \) and the complexity of each iteration is \(\Theta(1) \). Therefore, the complexity of algorithm \(\mathcal{X} \) is \(\Theta(n) \) because \(n \cdot \Theta(1) = \Theta(n) \).

Remark: Algorithm \(\mathcal{X} \) is correct with the same linear complexity even if the array is not sorted.

A \(\Theta(\log n) \)-complexity algorithm: Run the Binary-Search procedure twice to search in \(A \) for \(k \) and \(k + 1 \) and then deduce the number of times \(k \) appears in the array.

Assumption: When the Binary-Search procedure is looking to find a key in an array, it returns its first location if it appears at least once in the array. Otherwise it returns 0 if \(k < A[1] \), returns \(n \) if \(A[n] < k \), and returns the index \(i \) for which \(A[i] < k < A[i + 1] \). The complexity of this version of Binary-Search is still \(\Theta(\log n) \).

Algorithm \(\mathcal{Y}(A) \):

- Run Binary-Search to find if \(k \) appears in \(A \).
- If \(k \) does not appear in \(A \):
 * return (“\(k \) appears 0 times in \(A \)”).
- Otherwise, assume \(A[i] = k \) while \(A[i - 1] < k \) or \(i = 1 \).
- Run Binary-Search to find if \(k + 1 \) appears in the sub array \(A[i + 1] \leq \cdots \leq A[n] \).
 * return (“\(k \) appears (\(j - i + 1 \)) times in \(A \)”).
- Otherwise, the Binary-Search returns \(j \) such that \(A[j] = k \) and \(A[j + 1] > k + 1 \). As in the previous case:
 * return (“\(k \) appears (\(j - i + 1 \)) times in \(A \)”).

The high level description of algorithm \(\mathcal{Y} \) explains why algorithm \(\mathcal{Y} \) is correct.

The complexity of algorithm \(\mathcal{Y} \) is \(\Theta(\log n) \) which is the complexity of two executions of the Binary-Search procedure.

Remark: Consider the following variation of algorithm \(\mathcal{Y} \) called algorithm, \(\mathcal{Z} \). After finding that the first appearance of \(k \) is in \(A[i] \), algorithm \(\mathcal{Z} \) counts the number of appearances of \(k \) in \(A \) sequentially. Assume \(A[i] = k \) for some \(1 \leq i \leq n \). Then algorithm \(\mathcal{Z} \) checks if \(A[i + 1] = k, A[i + 2] = k, \ldots \) until it finds \(j \) such that \(A[j + 1] > k \) or until \(j = n \). Then algorithm \(\mathcal{Z} \) returns that \(k \) appears \((j - i + 1) \) times in \(A \). While algorithm \(\mathcal{Z} \) is more efficient than algorithm \(\mathcal{Y} \) when \((j - i + 1) \) is small, in the worst case when \((j - i + 1) = \Theta(n) \), the complexity of algorithm \(\mathcal{Z} \) is \(\Theta(n) \).
12. For \(n \geq 2\), let \(A = A[1] < A[2] < \cdots < A[n]\) be a sorted array with \(n\) distinct positive integers from the range \(1, 2, \ldots, n + 1\). That is, exactly one of the integers from this range is missing in the array \(A\).

Examples: The missing integer in the array \([1, 2, 3, 4, 5, 7, 8, 9]\) is 6, the missing integer in the array \([1, 2, 4, 5]\) is 3, the missing integer in the array \([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]\) is 12, the missing integer in the array \([2, 3, 4, 5, 6, 7]\) is 1, and the missing integer in the array \([1, 2, 3, 4, 5, 6, 7, 8, 9]\) is 10.

Describe an efficient algorithm that finds the missing integer. The only questions about the integers in the arrays that your algorithm may ask are of the type “is \(A[i] = i?\)” for some integer \(1 \leq i \leq n\).

What is the worst-case complexity (number of questions asked) of the algorithm?

A trivial linear complexity algorithm: For all indices \(1 \leq i \leq n\), check if \(A[i] = i\). The missing integer is \(i\) when \(A[i] \neq i\) which implies that \(A[i] = i + 1\). If at the end \(A[n] = n\) then the missing integer is \(n + 1\).

Algorithm \(X(A)\):

```plaintext
for i := 1 to n do
    if A[i] = i then continue
    else return(i)
return(n + 1)
```

Algorithm \(X\) is correct because it inspects all the \(n\) indices in \(A\). If the missing number is \(i < n + 1\), then it must be found during the scan because in this case \(A[i] = i + 1\). If the missing number is \(n + 1\), then the procedure finishes the scan and returns \(n + 1\).

The complexity of algorithm \(X\) is \(\Theta(n)\) because in the worst-case the algorithm needs to examine all the \(n\) entries in the array with complexity \(\Theta(1)\) for each entry and \(n \cdot \Theta(1) = \Theta(n)\).

A \(\Theta(\log n)\)-complexity algorithm: Run the Binary-Search procedure to find the first index in the array \(A\) for which \(i < A[i]\).

Algorithm \(Y(A)\):

```plaintext
A[n + 1] := n + 2
ℓ := 1
r := n + 1
while (ℓ < r) do
    m := \(\left\lfloor \frac{ℓ + r}{2} \right\rfloor\)
    if A[m] = m then ℓ := m + 1
    else r := m
return(ℓ)
```

Algorithm \(Y\) is correct because the binary-search will find the first index \(i\) in \(A\) such that \(A[i] = i + 1\) which always exists after defining \(A[n + 1] = n + 2\).

The number of iterations in algorithm \(Y\) is \(\Theta(\log(n + 1)) = \Theta(\log(n))\) which is the complexity of the Binary-Search procedure on an array of length \(n + 1\). Consequently, the complexity of algorithm \(Y\) is \(\Theta(\log(n))\) since each iteration has a \(\Theta(1)\)-complexity and \(\Theta(\log(n)) \cdot \Theta(1) = \Theta(\log(n))\).

Remark: There is a way to solve this problem without comparisons if the algorithm may apply addition operations involving entries of the array. First, find the sum \(S\) of all the integers in the array. If all the integers between 1 and \(n + 1\) were in the array, then the sum would have been \(1 + 2 + \cdots (n + 1) = \frac{(n + 1)(n + 2)}{2}\). As a result the missing number is

\[
\frac{(n + 1)(n + 2)}{2} - S
\]

For example the sum is \(S = 39\) for the array \([1, 2, 3, 4, 5, 7, 8, 9]\). The missing number is 6 because \(\frac{9 \cdot 10}{2} - 39 = 6\).

Example: Let \(A = [16, 2, 128, 64, 1, 8, 32, 4] \). Then \(M = 255 \) and \(S = [239, 253, 127, 191, 254, 247, 223, 251] \).

Design a linear time algorithm \((\Theta(n))\) to compute \(S[1], \ldots, S[n] \) **only with plus operations** (it is not allowed to use minus operations).

What is the **exact** number of plus operations used by the algorithm?

A by-definition \(\Theta(n^2) \)-Algorithm: For \(1 \leq i \leq n \), compute \(S[i] = A[1] + \cdots + A[i - 1] + A[i + 1] + \cdots + A[n] \).

Complexity: For \(1 \leq i \leq n \), computing \(S_i \) is done by exactly \(n - 2 \) plus operations. Therefore, the total number of plus operations in this algorithm is \(n(n - 2) = n^2 - 2n = \Theta(n^2) \).

A \(\Theta(n) \)-Algorithm:

- Compute the prefix-sum of the first \(n - 1 \) integers in \(A \). For \(1 \leq i \leq n - 1 \), let \(P[i] = \sum_{j=1}^{i} A[j] \).
- Compute the suffix-sum of the last \(n - 1 \) integers in \(A \). For \(n \geq i \geq 2 \) let \(Q[i] = \sum_{j=i}^{n} A[j] \).
- Compute the array \(S \)

 \[
 S[i] = \begin{cases}
 Q[2] & \text{for } i = 1 \\
 P[n - 1] & \text{for } i = n \\
 P[i - 1] + Q[i + 1] & \text{for } 2 \leq i \leq n - 1
 \end{cases}
 \]

Correctness: By definition, \(S_1 = Q[2] \) and \(S_n = P[n - 1] \). Fix \(2 \leq i \leq n - 1 \). Then \(P[i - 1] = A[1] + \cdots + A[i - 1] \) and \(Q[i + 1] = A[i + 1] + \cdots + A[n] \). Therefore,

\[
\]

Remark: Note that there is no need to compute the last values of the prefix-sum \((P[n])\) and the last value of the suffix-sum \((Q[1])\) because they are not required for the computations of \(S[1], S[2], \ldots, S[n] \).

Complexity: The \(n - 1 \) prefix-sum values can be computed with \(n - 2 \) plus operations and so are the \(n - 1 \) suffix-sum values. Then, for \(2 \leq i \leq n - 1 \), all the \(S_i \) values are computed with \(n - 2 \) plus operations. The total number of plus operations in this algorithm is

\[(n - 2) + (n - 2) + (n - 2) = 3n - 6 = \Theta(n)\]

Example:

\[
\begin{align*}
A &= [16, 2, 128, 64, 1, 8, 32, 4] \\
P &= [16, 18, 146, 210, 211, 219, 251, *] \\
Q &= [* , 239, 237, 109, 45, 44, 36, 4] \\
S &= [239, 253, 127, 191, 254, 247, 223, 251]
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

Describe an efficient algorithm that finds two integers from the array whose sum is even. What is the complexity the algorithm?

A by-definition algorithm: Examine the sums of all possible \(\binom{n}{2} \) pairs of integers from the array until finding a pair whose sum is even.

Algorithm \(\mathcal{X}(A) \):

\[
\begin{align*}
\text{for } & i := 1 \text{ to } n - 1 \text{ do} \\
\text{for } & j := i + 1 \text{ to } n \text{ do} \\
& \text{if } A[i] + A[j] \text{ is even then return } (A[i], A[j]) \\
\text{return}(\text{“there are no two integers in } A \text{ whose sum is even”})
\end{align*}
\]

Algorithm \(\mathcal{X} \) is correct because it inspects the sums of all possible pairs in \(A \).

The complexity of algorithm \(\mathcal{X} \) is \(O(n^2) \) because in the worst-case the two loops terminate when there are no two integers in \(A \) whose sum is even. However, if \(A[1] \) is even then \(i \) will be 2 only if the rest of the integers in the array including \(A[2] \) and \(A[3] \) are odd. But then \(A[2] + A[3] \) is even and \(i \) is never greater than 2. Similarly, if \(A[1] \) is odd then \(i \) will be 2 only if the rest of the integers in the array including \(A[2] \) and \(A[3] \) are even. But then \(A[2] + A[3] \) is even and \(i \) is never greater than 2. As a result, the worst-case complexity of algorithm \(\mathcal{X} \) is \(\Theta(n) \).

A constant time algorithm: The \(\Theta(n) \) analysis of algorithm \(\mathcal{X} \) works even if only the first three integers in \(A \) are examined. This is because two of the integers among \(A[1], A[2], A[3] \) must have the same parity and as a result their sum is even.

Algorithm \(\mathcal{Y}(A) \):

\[
\begin{align*}
\end{align*}
\]

There are constant number of operations in algorithm \(\mathcal{Y} \) and therefore its complexity is \(\Theta(1) \).

Remark: Algorithm \(\mathcal{Y} \) works with any three integers from the array \(A \) and it works even if \(A \) is not sorted.