Graph Algorithms

Chromatic Polynomials
Chromatic Polynomials – Definition

★ G – a simple labelled graph with n vertices and m edges.

★ k – a positive integer.

★ $P_G(k)$ – number of different ways of coloring the vertices of G with k colors.

★ $P_G(k)$ is an integer function (polynomial) of k:
 - If $\chi(G) > k$ then $P_G(k) = 0$.
 - If $\chi(G) \leq k$ then $P_G(k) > 0$.

$\Rightarrow \chi(G)$ is the smallest k such that $P_G(k) > 0$.

Graph Algorithms
3 Vertices and 0 Edges

\[P_G(k) = k^3 \]

\(k \) ways to color independently each of the vertices \(u, v, w \).
3 Vertices, 0 Edges, and 2 colors

\[P_G(2) = 2^3 = 8 \]
3 Vertices and 1 Edge

- k ways to color v; k ways to color u; $k - 1$ ways to color w that cannot get the color of u.

$$P_G(k) = k^2(k - 1)$$
$$= k^3 - k^2$$
3 Vertices, 1 Edge, and 2 colors

\[P_G(2) = 2^3 - 2^2 = 4 \]
3 Vertices and 2 Edges

- k ways to color u; $k - 1$ ways to color v that cannot get the color of u; $k - 1$ ways to color w that cannot get the color of u.

\[
P_G(k) = k(k - 1)^2
= k^3 - 2k^2 + k
\]
3 Vertices, 2 Edges, and 2 colors

\[P_G(2) = 2^3 - 2 \cdot 2^2 + 2 = 2 \]
3 Vertices and 3 Edges

$\star \ k$ ways to color u; $k - 1$ ways to color v that cannot get the color of u; $k - 2$ ways to color w that cannot get the colors of u and v.

\[
P_G(k) = k(k - 1)(k - 2)
= k^3 - 3k^2 + 2k
= (k - 1)^3 - (k - 1)
\]
3 Vertices, 3 Edges, and 3 colors

\[P_G(3) = 3 \cdot 2 \cdot 1 = 6 \]
k ways to color v; $k - 1$ ways to color x that cannot get the color of v; $k - 2$ ways to color u that cannot get the colors of v and x; $k - 2$ ways to color w that cannot get the colors of v and x.

Graph Algorithms
4 Vertices and 5 Edges

\[
P_G(k) = k(k - 1)(k - 2)^2
= k^4 - 5k^3 + 8k^2 - 4k
\]
4 Vertices and 5 Edges

- $k(k - 1)$ ways to color u and w with different colors; $k - 2$ ways to color v that cannot get the colors of u and w; $k - 3$ ways to color x that cannot get the colors of u, v, and w.
- k ways to color u and w with the same color; $k - 1$ ways to color v that cannot get the color of u and w; $k - 2$ ways to color x that cannot get the colors of u, v, and w.
\[P_G(k) = k(k - 1)(k - 2)(k - 3) + k(k - 1)(k - 2) \]
\[= k(k - 1)(k - 2)^2 \]
\[= k^4 - 5k^3 + 8k^2 - 4k \]
\(P_G(k) \) – Properties

\(P_G(k) \) is a polynomial in \(k \):

\[
P_G(k) = a_n k^n + a_{n-1} k^{n-1} + \cdots + a_1 k + a_0
\]

\(\star \) The degree of the polynomial is \(n \): the number of vertices in the graph.

\(\star \) All the coefficients are integers (could be 0).

\(\star \) The coefficient of \(k^n \) is 1: \(a_n = 1 \).

\(\star \) The coefficient of \(k^0 \) is 0: \(a_0 = 0 \).

\(\star \) The coefficient of \(k^{n-1} \) is \(-m \): \(a_{n-1} = -m \).
Signs of coefficients alternate between positive and negative.

\[P_G(k) = k^n - mk^{n-1} + b_{n-2}k^{n-2} \cdots + b_1 k + 0 \]

for non-negative coefficients \(b_1, \ldots, b_{n-2} \).

For a graph with at least one edge, the sum of the coefficients is 0.

\[a_n + a_{n-1} + \cdots + a_1 = 0 \]

for positive or negative or zero coefficients \(a_1, \ldots, a_{n-2} \).
Null Graphs – N_n

The null graph N_n has n vertices and no edges.

Each vertex can be colored independently with k colors.

\[P_{N_n}(k) = k^n = k^n - 0 \cdot k^{n-1} + 0 \cdot k^{n-2} - \cdots + 0 \]
The Complete graph K_n has n vertices and all possible edges: $m = \frac{n(n-1)}{2}$.

The first vertex can be colored with k colors, the second with $k - 1$ colors . . . and the last with $k - n + 1$ colors.

\[
P_{K_n}(k) = k(k - 1)(k - 2) \cdots (k - n + 1) \\
= k^n - (1 + 2 + \cdots + (n - 1))k^{n-1} + \cdots + 0
\]
The Star graph S_n has $n - 1$ edges. A root vertex is connected to the rest of the $n - 1$ vertices each connected only to the root.

The root can be colored with k colors and each of the other $n - 1$ vertices can be colored with $k - 1$ colors.

$$P_{S_n}(k) = k(k - 1)^{n-1}$$
$$= k^n - (n - 1)k^{n-1} + \cdots + 0$$
The Path graph P_n has $n - 1$ edges. The vertices are connected as a path of length $n - 1$ edges.

The first vertex can be colored with k colors and each one of the other $n - 1$ vertices, in order, can be colored with $k - 1$ colors.

\[
P_{P_n}(k) = k(k - 1)^{n-1}
\]
\[
= k^n - (n - 1)k^{n-1} + \cdots + 0
\]
A tree T_n is an acyclic (connected) graph with n vertices and $n - 1$ edges.

The root can be colored with k colors and each of the other $n - 1$ vertices can be colored with $k - 1$ colors if it is colored after its parent and before all of its children.

$$P_{T_n}(k) = k(k - 1)^{n-1} = k^n - (n - 1)k^{n-1} + \cdots + 0$$
Finding the Chromatic Polynomial

★ Let G be a labelled graph with n vertices.
★ Suppose that there are $f(r)$ different ways to partition G into r independent sets.
★ Each color class in any coloring is an independent set.
⇒ A given partition into r independent sets can be colored in $k(k - 1) \cdots (k - r + 1)$ ways with k colors where each independent set gets a different color.

$$P_G(k) = \sum_{r=1}^{n} f(r) \cdot k(k - 1) \cdots (k - r + 1)$$
The Cycle C_4\

\[
P_{C_4}(k) = f(1)k + f(2)k(k - 1) + f(3)k(k - 1)(k - 2) + f(4)k(k - 1)(k - 2)(k - 3)
\]

\[
= k^2 - k + 2k^3 - 6k^2 + 4k + k^4 - 6k^3 + 11k^2 - 6k
\]

\[
= k^4 - 4k^3 + 6k^2 - 3k
\]

\[
= (k - 1)^4 + (k - 1)
\]

* $f(1) = 0$ $f(2) = 1$ $f(3) = 2$ $f(4) = 1$.
The Coefficients in $P_G(k)$

$$P_G(k) = \sum_{r=1}^{n} f(r) \cdot k(k-1) \cdots (k-r+1)$$

★ $P_G(k)$ is a polynomial.

★ All the coefficients in $P_G(k)$ are integers.

★ The degree of $P_G(k)$ is n because $f(r) = 0$ for $r > n$.

★ The coefficient of k^n is 1 because $f(n) = 1$.

★ The coefficient of k^0 is 0. because $f(0) = 0$.

Graph Algorithms
The Sum of All the Coefficients

Lemma: Let G be a graph with n vertices and at least 1 edge. Then the sum of all the coefficients in $P_G(k)$ is 0.

Proof:

* It is impossible to color G with 1 color $\Rightarrow P_G(1) = 0$.
* By definition, $P_G(1) = a_n 1^n + a_{n-1} 1^{n-1} + \cdots + a_1 1^1$.
* Therefore, $\sum_{i=1}^{n} a_i = 0$.
The Coefficient of k^{n-1}

Lemma: Let G be a graph with n vertices and m edges. Then the coefficient of k^{n-1} in $P_G(k)$ is $-m$.

Proof:
- The coefficient of k^{n-1} in $k(k-1) \cdots (k-n+1)$ is $-\frac{1}{2}n(n-1)$ and $f(n) = 1$.
- The coefficient of k^{n-1} in $k(k-1) \cdots (k-n+2)$ is 1 and $f(n-1)$ is equal to the number of non-adjacent pairs of vertices: $f(n-1) = \frac{1}{2}n(n-1) - m$.
- The coefficient of k^{n-1} in $k(k-1) \cdots (k-r+1)$ for $r < n-1$ is 0.
- The coefficient of k^{n-1} in $P_G(k)$ is
 $$1 \cdot (-\frac{1}{2}n(n-1)) + (\frac{1}{2}n(n-1) - m) \cdot 1 = -m.$$
Disconnected Graphs

Lemma: Let G_1, G_2, \ldots, G_h be the h connected components of G. Then $P_G(k) = P_{G_1}(k) \cdot P_{G_2}(k) \cdots P_{G_h}(k)$.

Proof: The colorings of the h connected components are independent.

Example:

![Disconnected Graph Example](image)

$$P_G(k) = P_{K_2}(k) \cdot P_{K_1}(k)$$

$$= k(k - 1)k$$

$$= k^3 - k^2$$
Disconnected Graphs

Corollary: If G is composed of h connected components, then the coefficient of k^ℓ for $\ell < h$ is 0.

Proof: The coefficient of k^0 is 0 in $P_{G_i}(k)$ for all $1 \leq i \leq h$ ⇒ in the product of the h polynomials the smallest degree with a positive coefficient is k^h.

Example: The null graph N_n has n connected components ⇒ all the coefficients are 0 except the coefficient of k^n which is 1 ⇒ $P_{N_n}(k) = k^n$.
Lemma: Assume that the chromatic polynomial of a graph G is $P_G(k) = k(k - 1)^{n-1}$. Then G is a tree with n vertices.

Proof:

★ The degree of $P_G(k)$ is $n \Rightarrow G$ has n vertices.
★ The coefficient of k^{n-1} is $-(n - 1) \Rightarrow G$ has $n - 1$ edges.
★ The coefficient of k in a disconnected graph is 0 and the coefficient of k in $k(k - 1)^{n-1}$ is greater than 0 $\Rightarrow G$ is connected.
★ A connected graph with n vertices and $n - 1$ edges is a tree.
Three Transformations

Delete an edge: \(G - (u, v) \) is \(G \) without the old edge \((u, v)\).

Add an edge: \(G + (u, v) \) is \(G \) with the new edge \((u, v)\).

Contract 2 vertices: \(G/(u, v) \) is \(G \)

★ without the old vertices \(u \) and \(v \) and all the edges that are connected to them,

★ with a new vertex \(uv \) that is connected to all the neighbors of \(u \) and \(v \).
First Recursive Formula for $P_G(k)$

Theorem: For any non-adjacent vertices u and v,

$$P_G(k) = P_{G+(u,v)}(k) + P_{G/(u,v)}(k)$$

Proof:

- $P_{G+(u,v)}(k)$ covers all the colorings in which the color of u is different than the color of v.
- $P_{G/(u,v)}(k)$ covers all the colorings in which the color of u is the same as the color of v.
The Null Graph N_2

\[P_{N_2}(k) = P_{K_2}(k) + P_{K_1}(k) \]
\[= k(k - 1) + k \]
\[= k^2 \]
First Recursive Formula for $P_G(k)$

Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of complete graphs with at most n vertices,

$$P_G(k) = P_{K_n}(k) + b_{n-1}P_{K_{n-1}}(k) + \cdots + b_1P_{K_1}(k)$$

for some non-negative integers b_{n-1}, \ldots, b_1.

Graph Algorithms
The Cycle C_4

\[P_{C_4}(k) = P_{K_4}(k) + 2P_{K_3}(k) + P_{K_2}(k) \]
\[= k(k - 1)(k - 2)(k - 3) + 2k(k - 1)(k - 2) + k(k - 1) \]
\[= k^4 - 4k^3 + 6k^2 - 3k \]
\[= (k - 1)^4 + (k - 1) \]
Theorem: For any edge \((u, v)\),

\[P_G(k) = P_{G-(u,v)}(k) - P_{G/(u,v)}(k) \]

Proof:

\(<\>
\begin{itemize}
 \item \(P_{G-(u,v)}(k) \) covers all the colorings in which the color of \(u \) is the same as the color of \(v \) and all the colorings in which the color of \(u \) is different than the color of \(v \).
 \item \(P_{G/(u,v)}(k) \) covers all the colorings in which the color of \(u \) is the same as the color of \(v \).
\end{itemize>
The Complete Graph K_2

\[P_{K_2}(k) = P_{N_2}(k) - P_{N_1}(k) \]
\[= k^2 - k \]
\[= k(k - 1) \]
Corollary: The chromatic polynomial of G is a linear combination of chromatic polynomials of null graphs with at most n vertices,

$$P_G(k) = P_{N_n}(k) + c_{n-1}P_{N_{n-1}}(k) + \cdots + c_1P_{N_1}(k)$$

for integers (positive, negative, or 0) c_{n-1}, \ldots, c_1.
The Cycle C_4

$$P_{C_4}(k) = P_{N_4}(k) - 4P_{N_3}(k) + 6P_{N_2}(k) - 3P_{N_1}(k)$$

$$= k^4 - 4k^3 + 6k^2 - 3k$$

$$= (k - 1)^4 + (k - 1)$$
The Chromatic Polynomial of the Cycle C_n

\[P_{C_n}(k) = P_{P_n}(k) - P_{C_{n-1}}(k) \]
\[= P_{P_n}(k) - P_{P_{n-1}}(k) + P_{C_{n-2}}(k) \]
\[\vdots \]
\[= P_{P_n}(k) - P_{P_{n-1}}(k) + \cdots + P_{P_2}(k) \]
\[= k(k - 1)^{n-1} - k(k - 1)^{n-2} + \cdots + k(k - 1) \]
Proposition: For \(n \geq 3 \), \(P_{C_n}(k) = (k - 1)^n + (-1)^n(k - 1) \).

Proof:

\[P_{C_3} = k(k-1)(k-2) = k^3 - 3k^2 + 2k = (k-1)^3 - (k-1) \]
\[P_{C_4} = k^4 - 4k^3 + 6k^2 - 3k = (k-1)^4 + (k-1) \]

\[
P_{C_n}(k) = P_{P_n}(k) - P_{C_{n-1}}(k) = k(k - 1)^{n-1} - (k - 1)^{n-1} - (-1)^{n-1}(k - 1) = (k - 1)^n + (-1)^n(k - 1)
\]
The Chromatic Polynomial of the Broken Wheel B_n

\[P_{B_2} = k(k - 1). \]

\[P_{B_3} = k(k - 1)(k - 2). \]

\[P_{B_4} = k(k - 1)(k - 2)^2. \]
The Chromatic Polynomial of the Broken Wheel B_n

\[
P_{B_n}(k) = P_{B'_{n-1}}(k) - P_{B_{n-1}}(k)
= (k - 1)P_{B_{n-1}}(k) - P_{B_{n-1}}(k)
= (k - 2)P_{B_{n-1}}(k)
\vdots
= (k - 2)^{n-2}P_{B_2}(k)
= k(k - 1)(k - 2)^{n-2}
\]
The Chromatic Polynomial of the Wheel W_n

$\star \ P_{W_4} = k(k - 1)(k - 2)(k - 3)$.

$\star \ P_{W_5} = k(k - 1)(k - 2)(k^2 - 5k + 7)$.

$\star \ P_{W_6} = k(k - 1)(k - 2)(k - 3)(k^2 - 4k + 5)$.
The Chromatic Polynomial of the Wheel W_n

\[
P_{W_n}(k) = P_{B_n}(k) - P_{W_{n-1}}(k) \\
= k(k - 1)(k - 2)^{n-2} - P_{W_{n-1}}(k) \\
= k(k - 1) \left[(k - 2)^{n-2} - (k - 2)^{n-3} \right] + P_{W_{n-2}}(k) \\
\vdots \\
= k(k - 1) \left[(k - 2)^{n-2} - (k - 2)^{n-3} \cdots + (k - 2) \right] \\
= k(k - 2)^{n-1} + (-1)^{n-1} k(k - 2) \\
= k(k - 2) \left[(k - 2)^{n-2} + (-1)^{n-1} \right]
\]
The Signs of the Coefficients of $P_G(k)$

Lemma: Let G be a graph with n vertices and m edges. Then the coefficients of $P_G(k)$ alternate between positive and negative.

Proof:

⭐ By induction on m.

⭐ If $m = 0$ then $P_G(k) = k^n$ and 0 can be $+0$ or -0.

⭐ Assume correctness for graphs with $m - 1$ edges or less.

⭐ Let (u, v) be an edge in G.
Both $G - (u, v)$ and $G/(u, v)$ have at most $m - 1$ edges. $G - (u, v)$ has n vertices and $G/(u, v)$ has $n - 1$ vertices.

By induction, $P_{G - (u,v)} = k^n - b_{n-1}k^{n-1} + b_{n-2}k^{n-2} - \ldots$ for non-negative integers b_1, \ldots, b_{n-1}.

By induction, $P_{G/(u,v)} = k^{n-1} - c_{n-2}k^{n-2} + c_{n-3}k^{n-3} - \ldots$ for non-negative integers c_1, \ldots, c_{n-2}.

Recall that $P_G(k) = P_{G - (u,v)}(k) - P_{G/(u,v)}(k)$.

$P_G(k) = k^n - (b_{n-1} + 1)k^{n-1} + (b_{n-2} + c_{n-2})k^{n-2} - \ldots$

The signs alternate since all b_i and c_i are not negative.