Graph Algorithms

Vertex Coloring
The Input Graph

\[G = (V, E) \text{ a simple and undirected graph:} \]

- \(V \): a set of \(n \) vertices.
- \(E \): a set of \(m \) edges.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Vertex Coloring

Definition I:
★ A disjoint collection of independent sets that cover all the vertices in the graph.
★ A partition $V = I_1 \cup I_2 \cup \cdots \cup I_\chi$ such that I_j is an independent set for all $1 \leq j \leq \chi$.

Definition II:
★ An assignment of colors to the vertices such that two adjacent vertices are assigned different colors.
★ A function $c : V \to \{1, \ldots, \chi\}$ such that if $(u, v) \in E$ then $c(u) \neq c(v)$.

Observation: Both definitions are equivalent.
Example: Coloring
Example: Coloring with Minimum Number of Colors
The Vertex Coloring Problem

The optimization problem: Find a vertex coloring with minimum number of colors.

Notation: The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors required to color all the vertices of G.

Hardness: A very hard problem (an NP-Complete problem).
It is NP-Hard to color a 3-colorable graph with 3 colors.

It is NP-Hard to construct an algorithms that colors a graph with at most $n^\varepsilon \chi(G)$ colors for any constant $0 < \varepsilon < 1$.
Known Algorithms for Vertex Coloring

★ There exists an optimal algorithm for coloring whose running time is $O\left(mn \left(1 + 3^{1/3} \right)^n \right) \approx mn1.442^n$.

★ There exists a polynomial time algorithm that colors any graph with at most $O(n/ \log n)\chi(G)$ colors.

★ There exists an algorithm that colors a 3-colorable graph with $O(n^{1/3})$ colors.
Properties of Vertex Coloring

Observation: \(K(G) \leq \chi(G) \).

- Because in any vertex coloring, each member of a clique must be colored by a different color.

Observation: \(\chi(G) \geq \left\lceil \frac{n}{I(G)} \right\rceil \).

- A pigeon hole argument: the size of each color-set is at most \(I(G) \).
Example: $\chi(G) = K(G)$

- $K(G) = 4$ and $\chi(G) = 4$.
- Every member of the only clique of size 4 must be colored with a different color.
Example: $\chi(G) > K(G)$

$K(G) = 2$ and $\chi(G) = 3$
Example: \(\chi(G) > K(G) \)

\(K(G) = 2 \) and \(\chi(G) = 4 \)
Theorem: For any $k \geq 3$, there exists a triangle-free graph G_k ($K(G_k) = 2$) for which $\chi(G_k) = k$.

A construction: G_3 and G_4 are the examples above. Construct G_{k+1} from G_k.

- Let $V = \{v_1, \ldots, v_n\}$ be the vertices of G_k.
- The vertices of G_{k+1} include V, a new vertex w, and a new set of vertices $U = \{u_1, \ldots, u_n\}$ for a total of $2n+1$ vertices.
- The edges of G_{k+1} include all the edges of G_k, w is connected to all the vertices in U, and $u_i \in U$ is connected to all the neighbors of v_i in G_k.

$\chi(G') >> K(G')$
Constructing G_4 from G_3.

Graph Algorithms
Constructing G_4 from G_3.
Constructing G_4 from G_3.

Graph Algorithms

15
Constructing G_4 from G_3.
\(G_{k+1} \) is a Triangle-Free graph

\begin{itemize}
 \item \(U \) is an independent set in \(G_{k+1} \) and therefore there is no triangle with at least 2 vertices from \(U \).
 \item \(w \) is not adjacent to \(V \) and is adjacent to the independent set \(U \). Therefore \(w \) cannot be a member in a triangle.
 \item \(V \) contains no triangles because \(G_k \) is a triangle-free graph.
 \item The remaining case is a triangle with 1 vertex \(u_i \in U \) and 2 vertices \(v, v' \in V \).
 \item This is impossible since \(u_i \) is connected to the neighbors of \(v_i \) and therefore the triangle \(u_i v v' \) would imply the triangle \(v_i v v' \) in the triangle-free graph \(G_k \).
\end{itemize}
\[\chi(G_{k+1}) \leq k + 1 \]

- Color the vertices in \(V \) with \(k \) colors as in \(G_k \).
- Color \(u_i \) with the color of \(v_i \). This is a legal coloring since \(u_i \) is connected to the neighbors of \(v_i \).
- Color \(w \) with a new color.
Coloring G_4
Coloring G_4
Coloring G_4
Coloring G_4
\[\chi(G_{k+1}) > k \]

- Assume that \(G_{k+1} \) is colored with the colors 1, \ldots, \(k \).
- Let the color of \(w \) be \(k \).
- Since \(w \) is adjacent to all the vertices in \(U \) it follows that the vertices in \(U \) are colored with the colors 1, \ldots, \(k - 1 \).
- Color each \(v_i \) that is colored by \(k \) with the color of \(u_i \).
- This produces a legal coloring of the \(G_k \) subgraph of the \(G_{k+1} \) graph because \(u_i \) is adjacent to all the neighbors of \(v_i \) and the set of all the \(k \)-colored \(v_i \) is an independent set.
- A contradiction since \(\chi(G_k) = k \).
Perfect Graphs

• In a perfect graph $\chi(G) = K(G)$ for any “induced” subgraph of G.

• Coloring is not Hard for perfect graphs.

• The complement of a perfect graph is a perfect graph.

• Interval graphs are perfect graphs.
Observation: A graph with $n \geq 1$ vertices needs at least 1 color and at most n colors.

$\star 1 \leq \chi(G) \leq n$.

Null Graphs: No edges \Rightarrow 1 color is enough.

$\star \chi(N_n) = 1$.

Complete Graphs: All edges $\Rightarrow n$ colors are required.

$\star \chi(K_n) = n$.
Theorem: The following three statements are equivalent for a simple undirected graph G:

1. G is a bipartite graph.

2. There are no odd length cycles in G.

3. G can be colored with 2 colors.
Proof: 1 \Rightarrow 2

- The vertices of G can be partitioned into 2 sets A and B such that each edge connects a vertex from A with a vertex from B.

- The vertices of any cycle alternate between A and B.

- Therefore, any cycle must have an even length.
Proof: \(2 \Rightarrow 3 \)

★ Run BFS on \(G \) starting with an arbitrary vertex.
★ Color odd-levels vertices 1 and even-level vertices 2.
★ Tree edges connect vertices with different colors.
★ In a BFS there are no forward and backward edges and a cross edge connects level \(\ell \) with level \(\ell' \) only if \(|\ell - \ell'| \leq 1 \).
★ If \(\ell = \ell' + 1 \) then the cross edge connects vertices with different colors.
★ If \(\ell = \ell' \) then the cross edge closes an odd-length cycle contradicting the assumption.
★ Thus, all the edges connect vertices with different colors.
Proof: $3 \Rightarrow 1$

- Let A be all the vertices with color 1 and let B be all the vertices with color 2.

- By the definition of coloring, any edge connects a vertex from A with a vertex from B.

- Therefore, the graph is bipartite.
Coloring 2-colorable graphs

- Apply the BFS algorithm from the $2 \Rightarrow 3$ proof.
- $O(n + m)$-time complexity using adjacency lists.
- Can be used to recognize bipartite graphs: If there exists an edge connecting vertices with the same color then the graph is not bipartite.
A tree is a bipartite graph and therefore can be colored with 2 colors.
A cycle graph with an even number of vertices is a bipartite graph and therefore can be colored with 2 colors.
Odd Length Cycles

* A cycle graph with an odd number of vertices is not a bipartite graph \(\Rightarrow \) it cannot be colored with 2 colors.

* 3-Coloring: Color one vertex 3. The rest of the vertices induce a bipartite graph and therefore can be colored with colors 1 and 2.
Greedy Vertex Coloring

Theorem: Let Δ be the maximum degree in G. Then G can be colored with $\Delta + 1$ colors.

Proof:

- Color the vertices in a sequence.
- A vertex is colored with a free color, one that is not the color of one of its neighbors.
- Since the maximum degree is Δ, there is always a free color among $1, 2, \ldots, \Delta + 1$ (a pigeon hole argument).
A Proof by Induction

★ Assume G has n vertices.
★ The theorem is true for a graph with 1 vertex since $\Delta = 0$.
★ Let $n \geq 2$ and assume that the theorem is correct for any graph with $n - 1$ vertices.
★ Omit an arbitrary vertex and all of its edges from the graph.
★ By the induction hypothesis the remaining graph can be colored with at most $\Delta + 1$ colors.
★ Since the degree of the omitted vertex is at most Δ it follows that one of the colors $1, \ldots, \Delta + 1$ will be available to color the omitted vertex (a pigeon hole argument).
The star graph is a bipartite graph and therefore can be colored with 2 colors.

$\Delta = n - 1$ in a star graph. The above theorem guarantees a performance that is very far from the optimal performance.
First-Fit Implementation

★ Consider the vertices in any sequence.
★ Color a vertex with the smallest available color.

Greedy Coloring \((G)\)

\[
\text{for } i = 1 \text{ to } n \\
\quad c = 1 \\
\quad \text{while } (\exists j \{(i, j) \in E\}) \text{ AND } (c(j) = c) \\
\quad \quad c = c + 1 \\
\quad c(i) = c
\]

Complexity: Possible in \(O(m + n)\) time.
Sometimes Greedy is optimal

Complete graphs: $\Delta = n - 1$ and $n = \Delta + 1$ colors are required.

Odd-length cycles: $\Delta = 2$ and 3 colors are required.
The order of the vertices is crucial

A bipartite graph G.

- $2k$ vertices v_1, v_2, \ldots, v_k and u_1, u_2, \ldots, u_k.
- All (v_i, u_j) edges for $1 \leq i \neq j \leq k$.
Suppose the order is \(v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_k \).

- The algorithm colors \(G \) with 2 colors.
A Bad Order

★ Suppose the order is \(v_1, u_1, v_2, u_2, \ldots, v_k, u_k \).

- The algorithm colors \(G \) with \(k \) colors.
Greedy with a Decreasing Order of Degrees

Notation: Let the vertices be v_1, v_2, \ldots, v_n and let their degrees be $\Delta = d_1 \geq d_2 \geq \cdots \geq d_n$.

Theorem: $\chi(G) \leq \max_{1 \leq i \leq n} \min \{d_i + 1, i\}$.

Proof:

- The input order for greedy is v_1, v_2, \ldots, v_n.
- When coloring v_i at most $i - 1$ colors are used by its neighbors since greedy has colored only $i - 1$ vertices.
- When coloring v_i at most d_i colors are used by its neighbors because the degree of v_i is d_i.
Back Degrees

Notation:
★ Let the vertices be v_1, v_2, \ldots, v_n and let their degrees be $d_1, d_2, \ldots, d_n \leq \Delta$.
★ Let $d'_i \leq d_i$ be the number of neighbors of v_i among v_1, \ldots, v_{i-1} (in particular: $d'_i \leq i - 1$).

Theorem: $\chi(G') \leq \max_{1 \leq i \leq n} \{d'_i + 1\}$.

Proof:
★ The input order for greedy is v_1, v_2, \ldots, v_n.
★ When coloring v_i at most d'_i colors are used by its neighbors.
A Marginal Improvement to the Greedy Algorithm

Theorem: A connected non-clique G can be colored with Δ colors where $\Delta \geq 3$ is the maximum degree in G.

Cliques: K_n requires $n = \Delta + 1$ colors.

Cycles: C_n, for an odd n, requires $3 = \Delta + 1$ colors.
By induction implying an algorithm.

Let v be an arbitrary vertex with degree $d(v)$.

Let $G' = G \setminus \{v\}$:
- If G' is not a clique or a cycle, then color it recursively with Δ colors.
- If G' is a clique, then it is a K_Δ graph that can be colored with Δ colors. G' cannot be a $K_{\Delta+1}$ graph since then the neighbors of v would have degree $\Delta + 1$.
- If G' is a cycle, then it can be colored with $3 \leq \Delta$ colors.
★ If \(d(v) \leq \Delta - 1 \), then color \(v \) with a free color (pigeon hole argument).

★ If \(v \) has 2 neighbors colored with the same color, then color \(v \) with a free color (pigeon hole argument).

★ From now on assume that \(d(v) = \Delta \) and that each neighbor of \(v \) is colored with a different color.
Let the neighbors of v be $v_1, v_2, \ldots, v_\Delta$ and let their colors be $c_1, c_2, \ldots, c_\Delta$ respectively.
Definitions and an Observation

★ For colors x and y, let $G(x, y)$ be the subgraph of G containing only the vertices whose colors are x or y.

★ For a vertex w whose color is x, let $G_w(x, y)$ be the connected component of $G(x, y)$ that contains w.

★ Interchanging the colors x and y in the connected component $G_w(x, y)$ of $G(x, y)$ results with another legal coloring in which the color of w is y.
The Observation
Let v_i and v_j be any 2 neighbors of v.

If $G_{v_i}(c_i, c_j)$ does not contain v_j, then interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.

The color of both v_i and v_j is now c_j and no neighbor of v is colored with c_i.

Color v with c_i.
Graph Algorithms 51

Proof Continue

\[
V_i \quad V_d \quad V \quad V_1 \quad V_2
\]

\[
V_i \quad V_j \quad V \quad V_1 \quad V_2
\]
If \(v_i \) has 2 neighbors colored with \(c_j \), then color \(v_i \) with a different color and color \(v \) with \(c_i \).
From now on assume that v_i and v_j belong to the same connected component in $G(c_i, c_j)$ and that v_i has only 1 neighbor colored with c_j.
If $G_{v_i}(c_i, c_j)$ is not a path, then let $w \in G_{v_i}(c_i, c_j)$ be the closest to v_i whose color is c_i (or c_j) and who has more than 2 neighbors whose colors are c_j (or c_i).
⋆ Color \(w \) with a different color.

⋆ \(v_i \) and \(v_j \) are not anymore in the same connected component of \(G(c_i, c_j) \).
★ Interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.
★ The color of both v_j and v_i is now c_j and no neighbor of v is colored with c_i: Color v with c_i.
From now on assume that for any 2 neighbors v_i and v_j of v, the subgraph $G_{v_i}(c_i, c_j)$ is a path (could be an edge) starting with v_i and ending with v_j.
If for some v_k the path $G_{v_i}(c_i, c_k)$ intersects the path $G_{v_i}(c_i, c_j)$ in a vertex $w \neq v_i$ whose color is c_i, then w has 2 neighbors colored c_k and 2 neighbors colored c_j.

Color w with a different color than c_i, c_j, c_k.

Graph Algorithms
* v_i and v_j are not anymore in the same connected component of $G(c_i, c_j)$.

* Interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.

* The color of both v_j and v_i is now c_j and no neighbor of v is colored with c_i: Color v with c_i.
⋆ From now on assume that the path $G_{v_i}(c_i, c_k)$ intersects the path $G_{v_i}(c_i, c_j)$ only at v_i.
By assumption the graph is not a clique. Therefore, there exist 2 neighbors of v, v_i and v_j, that are not adjacent. Let w be the c_j neighbor of v_i.

By assumption $\Delta \geq 3$. Therefore, there exists another neighbor of v, v_k that is different than v_i and v_j.

Proof Continue
★ Interchange the colors c_i and c_k in $G_{v_i}(c_i, c_k)$.
★ The color of v_i is c_k and the color of v_k is c_i.
★ Repeat the arguments as before and assume that
 - $G_{v_j}(c_j, c_i)$ is a path from v_j to v_k.
 - $G_{v_j}(c_j, c_k)$ is a path from v_j to v_i.
★ These paths must intersect with w because w is the only c_j neighbor of v_i.
• Color w with a different color than c_i, c_j, c_k.

• v_i has no c_j neighbor.
* Color v_i with c_j.
* Color v with c_k.

Proof End
Complexity

★ Possible in $O(nm)$.

★ Each correction can be done in $O(m)$.
Definition: A cubic graph is a regular graph in which the degree of every vertex is 3.

Corollary: The chromatic number of a non-bipartite cubic graph that is not K_4 is 3.
Coloring 3-Colorable Graphs with $O(\sqrt{n})$ colors

Observation: In 3-colorable graphs, the subgraph containing only the neighbors of a particular vertex is a 2-colorable graph (a bipartite graph).
Let G be a 3-colorable graph.

Allocate 3 colors to a vertex and all of its neighbors if the degree of this vertex is larger than \sqrt{n}.

There are at most \sqrt{n} such vertices and therefore so far at most $3\sqrt{n}$ colors were used.
Now, all the degrees in the graph are less than \sqrt{n}.

The greedy algorithm needs at most \sqrt{n} colors to color the rest of the graph.

All together, the algorithm uses $O(\sqrt{n})$ colors.

- If all omitted vertices are colored with the same color, then at most $2\sqrt{n} + 1$ colors are used before applying the greedy algorithm.
- Therefore, the algorithm uses about $3\sqrt{n}$ colors.