Greedy Algorithms

- **Greedy algorithms** make decisions that “seem” to be the best following some greedy criteria.

- In **Off-Line** problems:
 - The whole input is known in advance.
 - Possible to do some preprocessing of the input.
 - Decisions are irrevocable.

- In **Real-Time** and **On-Line** problems:
 - The present cannot change the past.
 - The present cannot rely on the un-known future.
How and When to use Greedy Algorithms?

- **Initial solution:** Establish trivial solutions for a problem of a small size. Usually $n = 0$ or $n = 1$.

- **Top bottom procedure:** For a problem of size n, look for a greedy decision that reduces the size of the problem to some $k < n$ and then, apply recursion.

- **Bottom up procedure:** Construct the solution for a problem of size n based on some greedy criteria applied on the solutions to the problems of size $k = 1, \ldots, n - 1$.
The Coin Changing Problem

- **Input:**
 - Integer coin denominations \(d_n > \cdots > d_2 > d_1 = 1 \).
 - An integer amount to pay: \(A \).

- **Output:** Number of coins \(n_i \) for each denomination \(d_i \) to get the exact amount.
 - \(A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1 \).

- **Goal:** Minimize total number of coins.
 - \(N = n_n + \cdots + n_2 + n_1 \).

- **Remark:** There is always a solution with \(N = A \) since \(d_1 = 1 \).
Examples

USA: $d_6 = 100, d_5 = 50, d_4 = 25, d_3 = 10, d_2 = 5, d_1 = 1$.
- $A = 73 = 2 \cdot 25 + 2 \cdot 10 + 3 \cdot 1$.
- $N^* = 2 + 2 + 3 = 7$.

Old British: $d_3 = 240, d_2 = 20, d_1 = 1$.
- $A = 307 = 1 \cdot 240 + 3 \cdot 20 + 7 \cdot 1$.
- $N^* = 1 + 3 + 7 = 11$.
Greedy Solution

- **Idea:** Use the largest possible denomination and update \mathcal{A}.

- **Implementation:**

 Coin-Changing($d_n > \cdots > d_2 > d_1 = 1$)

 for $i = n$ downto 1

 $n_i = \lfloor \mathcal{A}/d_i \rfloor$

 $\mathcal{A} = \mathcal{A} \mod d_i = \mathcal{A} - n_id_i$

 Return($\mathcal{N} = n_n + \cdots + n_2 + n_1$)

- **Correctness:** $\mathcal{A} = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.

- **Complexity:** $\Theta(n)$ division and mod integer operations.
Optimality

- **Greedy** is optimal for the USA system.

A coin system for which **Greedy** is not optimal:

- \(d_3 = 4\)
- \(d_2 = 3\)
- \(d_1 = 1\)
- \(A = 6\):

 - **Greedy**: 6 = 1 · 4 + 2 · 1 ⇒ \(N = 3\).
 - **Optimal**: 6 = 2 · 3 ⇒ \(N = 2\).

A coin system for which **Greedy** is very "bad":

- \(d_3 = x + 1\)
- \(d_2 = x\)
- \(d_1 = 1\)
- \(A = 2x\):

 - **Greedy**: \(2x = 1 \cdot (x + 1) + (x - 1) \cdot 1\) ⇒ \(N = x\).
 - **Optimal**: \(2x = 2 \cdot x\) ⇒ \(N = 2\).
Optimality

- **Greedy** is optimal for the USA system.

- A coin system for which **Greedy** is not optimal:
 - \(d_3 = 4, \ d_2 = 3, \ d_1 = 1\) and \(A = 6\):
 - **Greedy:** \(6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3\).
 - **Optimal:** \(6 = 2 \cdot 3 \Rightarrow N = 2\).
Optimality

- **Greedy** is optimal for the USA system.

- A coin system for which **Greedy** is not optimal:
 - \(d_3 = 4, \ d_2 = 3, \ d_1 = 1 \) and \(A = 6 \):
 - **Greedy**: \(6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3 \).
 - **Optimal**: \(6 = 2 \cdot 3 \Rightarrow N = 2 \).

- A coin system for which **Greedy** is very “bad”:
 - \(d_3 = x + 1, \ d_2 = x, \ d_1 = 1 \) and \(A = 2x \):
 - **Greedy**: \(2x = 1 \cdot (x + 1) + (x - 1) \cdot 1 \Rightarrow N = x \).
 - **Optimal**: \(2x = 2 \cdot x \Rightarrow N = 2 \).
Efficiency

- **Optimal solution:** Check all possible combinations.
 - Not a polynomial time algorithm.

- **Another optimal solution:** Polynomial in both n and A.
 - Not a strongly polynomial time algorithm.

- **Objective:**
 - Find a solution that is polynomial only in n.
 - Probably impossible!?
The Knapsack Problem

Input:

- A thief enters a store and finds \(n \) items \(I_1, \ldots, I_n \).
- The value of item \(I_i \) is \(v(I_i) \) and its weight is \(w(I_i) \).
 - Both are positive integers.
- The thief can carry at most weight \(W \).
- The thief either takes all of item \(I_i \) or doesn’t take item \(I_i \).
The Knapsack Problem

Input:
- A thief enters a store and finds n items I_1, \ldots, I_n.
- The value of item I_i is $v(I_i)$ and its weight is $w(I_i)$.
 - Both are positive integers.
- The thief can carry at most weight W.
- The thief either takes all of item I_i or doesn’t take item I_i.

Goal: Carry items with maximum total value.
- Which are these items?
- What is their total value?
A General Greedy Scheme

- **Order** the items according to some **greedy criterion**.
 - Assume this order is J_1, J_2, \ldots, J_n.
 - Assume J_1 is the most desired item and J_n is the least desired item.

If J_1 is not too heavy ($w(J_1) \leq W$):
- **Take** item J_1.
- **Continue recursively** with J_2, J_3, \ldots, J_n and updated maximum weight $W - w(J_1)$.

If J_1 is too heavy ($w(J_1) > W$):
- **Ignore** item J_1.
- **Continue recursively** with J_2, J_3, \ldots, J_n and the same maximum weight W.
A General Greedy Scheme – Implementation

Non-Recursive Knapsack($I_1, \ldots, I_n, w(\cdot), v(\cdot), W$)

Let J_1, \ldots, J_n be the new order on the items.

$S = \emptyset$ (* the set of items the thief takes *)
$V = 0$ (* the value of these items *)

for $i = 1$ to n

if $w(J_i) \leq W$ then

$S = S \cup \{ J_i \}$
$V = V + v(J_i)$
$W = W - w(J_i)$

Return (S, V)
Greedy Criteria

- **Greedy criterion I:** Order the items by their value from the most expensive to the cheapest.

- **Greedy criterion II:** Order the items by their weight from the lightest to the heaviest.

- **Greedy criterion III:** Order the items by their ratio of value over weight from the largest ratio to the smallest ratio.
The three criteria are not optimal

Counter example for Greedy-by-Value and Greedy-by-Ratio:

- 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.

- **Optimal** takes items I_2 and I_3 for a profit of 12.

- **Greedy-by-Value** or **Greedy-by-Ratio** take only item I_1 for a profit of 10.
The three criteria are not optimal

- **Counter example for Greedy-by-Value and Greedy-by-Ratio:**
 - 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - **Optimal** takes items I_2 and I_3 for a profit of 12.
 - **Greedy-by-Value** or **Greedy-by-Ratio** take only item I_1 for a profit of 10.

- **Counter example for Greedy-by-Weight:**
 - 3 items and maximum weight is $W = 10$. Weights and values are: $I_1 = \langle 6, 13 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
 - **Optimal** takes only item I_1 for a profit of 13.
 - **Greedy-by-Weight** takes items I_2 and I_3 for a profit of 12.
Counter example for Greedy-by-Value:

- n items and maximum weight is W. Weights and values are: $I_1 = \langle W, 2 \rangle$, $I_2 = \langle 1, 1 \rangle$, \ldots, $I_3 = \langle 1, 1 \rangle$.
- **Optimal** takes items I_2, \ldots, I_n for a profit of $n - 1$.
- **Greedy-by-Value** takes only item I_1 for a profit of 2.
- The ratio is $(n - 1)/2$.
Very Bad Counter Examples for Criteria I and II

Counter example for Greedy-by-Value:

- n items and maximum weight is W. Weights and values are: $I_1 = \langle W, 2 \rangle$, $I_2 = \langle 1, 1 \rangle$, \ldots, $I_3 = \langle 1, 1 \rangle$.
- Optimal takes items I_2, \ldots, I_n for a profit of $n - 1$.
- Greedy-by-Value takes only item I_1 for a profit of 2.
- The ratio is $(n - 1)/2$.

Counter example for Greedy-by-Weight:

- 2 items and maximum weight is 2. Weights and values are: $I_1 = \langle 1, 1 \rangle$ and $I_2 = \langle 2, x \rangle$ for a very large x.
- Optimal takes item I_2 for a profit of x.
- Greedy-by-Weight takes item I_1 for a profit of 1.
- The ratio is x.
A Bad Counter Examples for Criterion III

- **Counter example for Greedy-by-Ratio:**
 - 3 items and maximum weight is W. Weights and values are:
 - $I_1 = \langle \frac{W}{2} + 1, \frac{W}{2} + 2 \rangle$, $I_2 = \langle \frac{W}{2}, \frac{W}{2} \rangle$, and $I_3 = \langle \frac{W}{2}, \frac{W}{2} \rangle$.
 - **Optimal** takes items I_2 and I_3 for a profit of W.
 - **Greedy-by-Ratio** takes item I_1 for a profit of $W/2 + 2$.
 - The ratio is almost 2.
Counter example for Greedy-by-Ratio:

3 items and maximum weight is W. Weights and values are: $I_1 = \langle \frac{W}{2} + 1, \frac{W}{2} + 2 \rangle$, $I_2 = \langle \frac{W}{2}, \frac{W}{2} \rangle$, and $I_3 = \langle \frac{W}{2}, \frac{W}{2} \rangle$.

Optimal takes items I_2 and I_3 for a profit of W.

Greedy-by-Ratio takes item I_1 for a profit of $W/2 + 2$.

The ratio is almost 2.

This is the worst counter example:

Greedy-by-Ratio guarantees half of the profit of **Optimal**.

Intuitively, for each item of weight w and value v taken by **Optimal**, there must be items taken by **Greedy-by-Ratio** with total weight at least w and a total value $v + \varepsilon$.
The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \leq p_i \leq 1$ of item l_i:
 - Its value is $p_i v(l_i)$.
 - Its weight is $p_i w(l_i)$.

Theorem: Greedy-by-Ratio is optimal.
The Fractional Knapsack Problem

- The thief can take portions of items.
- If the thief takes a fraction $0 \leq p_i \leq 1$ of item l_i:
 - Its value is $p_i v(l_i)$.
 - Its weight is $p_i w(l_i)$.

Theorem: Greedy-by-Ratio is optimal.
Proof

- Assume that **Greedy-by-Ratio** fails on the input I_1, \ldots, I_n and the weight W.

- Let the portions taken by **Optimal** be p_1, \ldots, p_n.
 - $p_i = 1$: all of item I_i is taken.
 - $p_i = 0$: none of item I_i is taken.
 - $0 < p_i < 1$: some but not all of item I_i is taken.

- Since **Greedy-by-Ratio** fails, there exist I_i and I_j such that:
 - \(\frac{v(I_i)}{w(I_i)} > \frac{v(I_j)}{w(I_j)} \) and $p_i < 1$ and $p_j > 0$.

- Because each unit of weight of item I_i has more value than each unit of weight of item I_j, it is more profitable to take more of item I_i and less of item I_j.

- A **contradiction** to the optimality of **Optimal**.
The 0–1 Knapsack Problem

- **Optimal solution**: Check all possible sets of items.
 - Not a polynomial time algorithm.

- **Another optimal solution**: Polynomial in both n and W.
 - Not a strongly polynomial time algorithm.

- **Objective**:
 - Find a solution that is polynomial only in n.
 - Probably impossible!?
 - However, **Greedy-by-Ratio** produces “good” solutions.
The Activity-Selection Problem

- **Input:**
 - Activities A_1, \ldots, A_n that need the service of a common resource.
 - Activity A_i is associated with a time interval $[s_i, f_i)$ for $s_i < f_i$.
 - A_i needs the service from time s_i until just before time f_i.

- **Mutual Exclusion:** The resource serves at most one activity at any time.

- **Definition:** A_i and A_j are compatible if either $f_i \leq s_j$ or $f_j \leq s_i$.

- **Goal:** Find a maximum size set of compatible activities.
Input: 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.
Example

- **Input:** 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

- **A graphical representation:**
Example

- **Input:** 3 activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

- **A graphical representation:**

- **The best solution:**
Static vs. Dynamic Greedy

- **Static:** The *greedy* criterion is determined in advance and cannot be changed during the execution of the algorithm.

- **Dynamic:** The *greedy* criterion may be modified during the execution of the algorithm based on prior decisions.

- **Remark:** A static criterion is also a dynamic criterion.
A General Static Greedy Scheme

- **Maintain** a set S of the activities that have been selected so far.

- Initially, $S = \emptyset$ and at the end, S is an optimal solution.

- **Order** the activities following some greedy criterion and **consider** the activities according to this order.

- Let A be the current considered activity. **If** A is compatible with all the activities in S:
 - **Then add** A to S.
 - **Else ignore** A.

- **Continue** until there are no activities to consider.
A General Dynamic Greedy Scheme

- **Maintain** two sets of activities:
 - S those that have been selected so far.
 - R those that can still be selected.
 - Initially, $S = \emptyset$ and $R = \{A_1, \ldots, A_n\}$.
 - At the end, S is an **optimal** solution and $R = \emptyset$.

- **Select** a “good” activity A from R, following some greedy criterion.
- **Add** A to S.
- **Delete** from R the activities that are not compatible with activity A.
- **Continue** until R is empty.
Greedy Criteria

- **Four criteria:**
 - Prefer short activities.
 - Prefer activities intersecting few other activities.
 - Prefer activities that start earlier.
 - Prefer activities that terminate earlier.

- **Optimality:** Only the fourth criterion is optimal.

- **Remarks:**
 - All four criteria are static in their nature.
 - The second criterion has a dynamic version.
An Optimal Greedy Solution

Preprocessing \((A_1, \ldots, A_n)\)

Sort the activities according to their finish time
Let this order be \(A_1, \ldots, A_n\) \((i < j \Rightarrow f_i \leq f_j)\)

Greedy-Activity-Selector \((A_1, \ldots, A_n)\)

\[
S = \{A_1\} \quad (* A_1 \text{ terminates the earliest} *)
\]

\[
j = 1 \quad (* A_j \text{ is the current selected activity} *)
\]

for \(i = 2\) to \(n\) (* scan all the activities *)

if \(s_i \geq f_j\) (* check compatibility *)

then (* select \(A_i\) that is compatible with \(S\) *)

\[
S = S \cup \{A_i\}
\]

\[
j = i
\]

else (* \(A_i\) is not compatible *)

Return \((S)\)
Correctness and Complexity

- **Correctness:** By definition.

- **Complexity:**
 - The sorting can be done in $O(n \log n)$ time.
 - There are $O(1)$ operations per each activity.
 - All together: $O(n \log n) + n \cdot O(1) = O(n \log n)$ time.
Example - Input

Amotz Bar-Noy (CUNY) Greedy Algorithms

Spring 2012 27 / 62
Example - Output

Activities over time:
- A_1
- A_4
- A_8
- A_{11}

Time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Optimality

- Let \mathcal{T} be an optimal set of activities.
- Transform \mathcal{T} to \mathcal{S} preserving the size of \mathcal{T}.
- Let A_1, \ldots, A_n be ordered by their finish time.
- Let A_i be the first activity that is in \mathcal{T} and not in \mathcal{S}.
- All the activities in \mathcal{T} that finish before A_i are also in \mathcal{S}.
Optimality

- $A_i \notin S \Rightarrow \exists A_j \in S$ that is not in \mathcal{T} in which $j < i$.

- A_j is compatible with all the activities in \mathcal{T} that finish before it since they are all in S.

- A_j is compatible with all the activities in \mathcal{T} that finish after A_i since it finishes before A_i.

Therefore, $\mathcal{T} \cup \{A_j\} \setminus \{A_i\}$ is a solution with the same size as \mathcal{T} and hence optimal.

Continue this way until \mathcal{T} becomes S.
Another optimal solution with 4 activities.
A third optimal solution: after the first transformation.
The greedy solution: after the second transformation.
Huffman Codes

Input:
- An alphabet of n symbols a_1, \ldots, a_n.
- A frequency f_i for each symbol a_i:
 - $\sum_{i=1}^{n} f_i = 1$.
- A File F containing L symbols from the alphabet.
 - a_i appears exactly $n_i = f_i \cdot L$ times in F.

Output:
- For symbol a_i, $1 \leq i \leq n$: A binary codeword w_i of length ℓ_i.
- A compressed (encoded) binary file F' of F.

Amotz Bar-Noy (CUNY)
Greedy Algorithms
Spring 2012
34 / 62
Huffman Codes

Input:
- An alphabet of \(n \) symbols \(a_1, \ldots, a_n \).
- A frequency \(f_i \) for each symbol \(a_i \):
 - \(\sum_{i=1}^{n} f_i = 1 \).
- A File \(\mathcal{F} \) containing \(L \) symbols from the alphabet.
 - \(a_i \) appears exactly \(n_i = f_i \cdot L \) times in \(\mathcal{F} \).

Output:
- For symbol \(a_i, 1 \leq i \leq n \): A binary codeword \(w_i \) of length \(\ell_i \).
- A compressed (encoded) binary file \(\mathcal{F}' \) of \(\mathcal{F} \).
Huffman Codes – Goals

- L' the length of \mathcal{F}' should be minimal.
- An efficient algorithm to find the n codewords.
 - Good polynomial running time: $O(n \log n)$.
- Efficient encoding and decoding of the file
 - Should be done in $O(B)$-time.
 - B is the size of the original file in bits.
Example

• A file with the alphabet a, b, c, d, e, f containing 100 symbols.
 • $n_a = 45, n_b = 13, n_c = 12, n_d = 16, n_e = 9, n_f = 5$.

• **Code I:**
 • $w_a = 000, w_b = 001, w_c = 010, w_d = 011, w_e = 100, w_f = 101$.
 • Length of encoded file is 300.

• **Code II:**
 • $w_a = 0, w_b = 101, w_c = 100, w_d = 111, w_e = 1101, w_f = 1100$.
 • Length of encoded file is 224
 • $1 \cdot 45 + 3 \cdot 13 + 3 \cdot 12 + 3 \cdot 16 + 4 \cdot 9 + 4 \cdot 5 = 224$.

• **Remark:** Code II is optimal, $\approx 25\%$ better than code I.
Prefix Free Codes

- **Definition:** A prefix free code is a code in which no codeword is a prefix of another codeword.

- **Examples:** Both code I and code II are prefix free.

- **Proposition:** A code in which the lengths of all the codewords is the same is a prefix free code.

- **Theorem:** Always exists an optimal prefix free code.

- **Encoding:** “Easy” using tables.

- **Decoding:** By scanning the coded text once.
A code can be represented by a rooted and ordered binary tree with \(n \) leaves.

Each leaf stores a codeword.

The codeword corresponding to a leaf is defined by the unique path from the root to the leaf:
- 0 for going left.
- 1 for going right.
A leaf is represented by the symbol and its frequency.

An internal node is labelled by the sum of the frequencies of all the leaves in its subtree.
Proposition: The binary tree represents a prefix free code since a path to a leaf cannot be a prefix of any other path.

Complexity Parameters:
- $f(x)$ the frequency of a leaf x.
- $\ell(x)$ the length of the path from the root to x.

The cost of the tree is: $B(T) = \sum_{\text{a leaf } x} (f(x) \cdot \ell(x))$.
- $B(T)$ is the average length of a codeword.

The length of the encoded file: $\sum_{\text{a leaf } x} (n(x) \cdot \ell(x))$.

Lemma: Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.
Lemma: Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

Proof:

Let z be an internal node with only one child y.

There are 2 cases:

- Case I: z is the root.
- Case II: z is not the root.
Case I

- z is the root: Make y the new root.
Case II

- z is not a root and p is its parent: Bypass z by making y the child of p.

![Diagram showing tree transformation](image-url)
Proof

In both cases:

- $\ell(x)$ of all the leaves in the sub-tree rooted at z is reduced by 1.

- These are the only changes.

- As a result the cost of the tree is improved.

- A contradiction to the optimality of the code.
Example: Code I

\[B(T) = 300 \]
Example: Improving Code I

\[
B(T) = 3 \cdot 86 + 2 \cdot 14 = 286
\]
Huffman Algorithm

- **Construct** a coding tree bottom-up.
- **Maintain** a forest with n leaves in all of its trees. Each tree is optimal for its leaves.
- Initially, there are n singleton trees in the forest. Each tree is a leaf.
- The frequency of a tree is the sum of the frequencies of all of its leaves.
- **Greedy** step:
 - **Find** the two trees with the minimum frequencies.
 - **Combine** them together into one tree.
 - The frequency of the new tree is the sum of the frequencies of the two combined trees.
- **Terminate** when there is only one tree in the forest.
Example
Example
Example
Example
Example
Huffman Code Animation

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/huffman.html
Correctness

- Huffman algorithm generates a binary tree with n leaves.

- A binary tree represents a prefix free code.
A forest of binary trees.
- Initially, the forest contains \(n \) singleton trees.
- At the end, the forest contains one tree.

The frequencies of the trees in the forest are maintained in a priority queue \(Q \).
- Initially, the queue contains the \(n \) original frequencies.
- At the end, the queue contains one frequency which is the sum of all original frequencies.
Implementation – Procedure

Huffman(⟨a₁, f₁⟩, …, ⟨aₙ, fₙ⟩)

Build-Queue({f₁, …, fₙ}, Q)

for i = 1 to n – 1 (* the combination loop *)

 z = Allocate-Node() (* creating a new root *)
 x = left(z) = Extract-Min(Q)
 (* lightest tree is the left sub-tree *)
 y = right(z) = Extract-Min(Q)
 (* second lightest tree is the right sub-tree *)

 f(z) = f(x) + f(y) (* frequency of new root *)

 Insert(Q, f(z)) (* inserting the new root to the queue *)

return Extract-Min(Q) (* last tree is the Huffman code *)
Implement the priority queue with a **Binary Heap**.

- The complexity of **Build-Queue** is $O(n)$.
- The complexity of **Extract-Min** and **Insert** is $O(\log n)$.
- The loop is executed $O(n)$ times.
- The complexity of all the **Extract-Min** and the **Insert** operations is $O(n \log n)$.
- The total complexity is: $O(n \log n)$.
Let \mathcal{A} be an alphabet.

Let x and y be the two symbols in \mathcal{A} with the smallest frequencies.

Then, there exists an optimal tree in which:
- x and y are adjacent leaves (differ only in their last bit).
- x and y are the farthest leaves from the root.
Let z and w be adjacent leaves in an optimal tree that are the farthest from the root.

Exchanging z and w with x and y yields a tree with a smaller or equal cost.
Let T be an optimal tree for the alphabet \mathcal{A}.

Let x, y be adjacent leaves in T and let z be their parent.

Let \mathcal{A}' be \mathcal{A} with a new symbol z replacing x and y with frequency: $f(z) = f(x) + f(y)$.

Let T' be the tree T without the leaves x and y and with z as a new leaf.

Then T' is an optimal tree for the alphabet \mathcal{A}'.
Proof

Let T'' be an optimal tree with smaller cost than T'.

Replacing z in T'' with the two leaves x and y creates a tree with a smaller cost than T.

A contradiction to the optimality of T.
Theorem: Huffman code is optimal.

Proof by Induction:

- The first lemma implies that the first greedy step is a first step towards an optimal solution.
- The second lemma justifies the inductive steps, applying again and again the first lemma.