A Search Problem

Input:
- A key K.

Output:
- Does K appear in A? **YES** or **NO**.
- If **YES**: an index i such that $A[i] = K$.

Method:
- **Comparisons** between K and the keys in the array.
A Search Game

- **Player 1:** Selects a number \(x \) in the range \([1..n]\).

- **Player 2:** Searches for \(x \) with comparisons \(x \leq i \) for some \(1 \leq i \leq n \).

- **Player 2 Goal:** Minimize number of comparisons until finding \(x \).
 - In the worst case or in the average case.
 - As a function of \(n \).
Equivalency

- $x \leq i$ is "equivalent" to $K \leq A[i]$.

- Algorithms can be converted from one model to another while preserving the complexity.

- It is easier to design algorithms in the search game model.

- It is easier to prove lower bounds in the search game model.
Sequential Search

Sequential-Search \((n, x)\)

\[
i = 0
\]

repeat

\[
i = i + 1
\]

until \(x \leq i\) (*) comparison (*)

return \(i\)
Sequential Search – Correctness

- **Induction hypothesis:**
 - $i \leq x \leq n$ after $i - 1$ comparisons with a NO answer.

- **Termination:**
 - If $x \leq i$ then necessarily $x = i$.
 - Eventually $x \leq n$.
Sequential Search – Complexity

- **n comparisons** in the worst case when \(x = n \).
 - Possible \(n - 1 \) comparisons since there is no need for the last question when \(x = n \).

- Could be only 1 comparison when \(x = 1 \).

- \((n + 1)/2 \) comparisons on average for a random \(x \) selected with a uniform distribution from the range \([1..n]\):

\[
\frac{1}{n} (1 + 2 + \cdots + n) = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}.
\]
Binary Search

Binary-Search \((n,x)\)

\[
\ell = 1 \\
u = n \\
\text{while } \ell < u \\
m = \lfloor (u + \ell)/2 \rfloor \\
\text{if } x \leq m \quad (\text{* comparison *}) \\
\quad \text{then } u = m \\
\quad \text{else } \ell = m + 1 \\
\text{return } \ell
\]
Let u_i and ℓ_i be the values of u and ℓ after iteration i of the algorithm and let $\Delta_i = u_i - \ell_i + 1$.

Initially $u_0 = n$, $\ell_0 = 1$, and $\Delta_0 = n$.

Claim: $\Delta_{i+1} \leq \left\lceil \frac{\Delta_i}{2} \right\rceil$ for $i \geq 0$.

Corollary: $\Delta_k = 1$ for $k = \lceil \log n \rceil$.

Correctness: By induction, always $\ell_i \leq x \leq u_i$. At the end, $\ell_i = u_i$ and therefore $x = \ell_i = u_i$.

Complexity: $\lceil \log n \rceil$: the number of iteration.
Let u_i and ℓ_i be the values of u and ℓ after iteration i of the algorithm and let $\Delta_i = u_i - \ell_i + 1$.

Initially $u_0 = n$, $\ell_0 = 1$, and $\Delta_0 = n$.

Claim: $\Delta_{i+1} \leq \left\lceil \frac{\Delta_i}{2} \right\rceil$ for $i \geq 0$.

Corollary: $\Delta_k = 1$ for $k = \lceil \log n \rceil$.

Correctness:
- By induction, always $\ell \leq x \leq u$.
- At the end, $\ell = u$ and therefore $x = \ell = u$.

Complexity:
- $\lceil \log n \rceil$: the number of iteration.
Adversary Player I

- **Does not** select x at the beginning of the game. Instead, maintains a set of candidates S for x.

- Given a search question:
 - $S(Y)$ – the set of candidates if the answer is **YES**.
 - $S(N)$ – the set of candidates if the answer is **NO**.

- **Observation:** $S = S(Y) \cup S(N)$.

- The adversary answer rule:
 - **YES** if $|S(Y)| \geq |S(N)|$.
 - **NO** if $|S(Y)| < |S(N)|$.
Example

- **Input:** \(n = 34 \) \(\Rightarrow \) \((* \ x \in [1..34] *) \).

- **Search:**
 - Q1: \(x \leq 13 \Rightarrow A1: \text{NO} \) \((* \ x \in [14..34] *) \).
 - Q2: \(x \leq 26 \Rightarrow A2: \text{YES.} \) \((* \ x \in [14..26] *) \).
 - Q3: \(x \leq 18 \Rightarrow A3: \text{NO.} \) \((* \ x \in [19..26] *) \).
 - Q4: \(x \leq 23 \Rightarrow A4: \text{YES.} \) \((* \ x \in [19..23] *) \).
 - Q5: \(x \leq 20 \Rightarrow A5: \text{NO.} \) \((* \ x \in [21..23] *) \).
 - Q6: \(x \leq 22 \Rightarrow A6: \text{YES.} \) \((* \ x \in [21..22] *) \).
 - Q7: \(x \leq 21 \Rightarrow A7: \text{YES.} \) \((* \ x \in [21..21] *) \).

- **Output:** \(x = 21 \).
Theorem

There exists \(1 \leq x \leq n\) for which the adversary forces the second player to ask at least \(\lceil \log_2 n \rceil\) comparisons.

Proof:

- Assume the second player asks \(k\) comparisons.
- Let \(S_i\) be the set of candidates after \(i\) comparisons.
- In particular, \(|S_0| = n\) and \(|S_k| = 1\).
- By the observation, \(\frac{|S_{i+1}|}{|S_i|} \geq (1/2)\) for \(1 \leq i \leq k - 1\).
- \(\lceil \log_2 n \rceil\) rounds are required to decrease \(n\) to 1 by halving.
- Therefore, \(k \geq \lceil \log_2 n \rceil\).
Remarks

- This is a **worst case** bound implying that no algorithm can guarantee less comparisons for all values of x.

- The theorem holds for a **stronger** Player 2. One that can ask any **YES/NO** questions. For example,
 - Is x even?
 - Is $x \in \{1, 2, 3, 5, 8, 13, 21, 34, 55\}$?
Find the Minimum Or the Maximum

Output:
- **Minimum:** A key K from the array such that $K \leq A[i]$ for $1 \leq i \leq n$.
- **Maximum:** A key K from the array such that $K \geq A[i]$ for $1 \leq i \leq n$.

Method: By comparisons between any two keys from the array.

Goal: Minimize number of key comparisons.
Find the Minimum

Trivial-Find-Min($A[1], \ldots, A[n]$)

$K := A[1]$

for $i = 2$ to n

if $K > A[i]$ (* comparison *)

then $K := A[i]$

return K

Correctness:

- $K = \min \{A[1], \ldots, A[i]\}$ after round number i.
- $K = \min \{A[1], \ldots, A[n]\}$ after $n - 1$ rounds.

Complexity: Exactly $n - 1$ comparisons.
Key idea: Any entry in the array could be the minimum.

Data structure:
- B - Candidates for minimum.
- R - Cannot be minimum.
Initially: $B = \{A[1], \ldots, A[n]\}$ and $R = \emptyset$.
At the end: $|B| = 1$ and $|R| = n - 1$.

Answer rule:
- $(R_1 : R_2) \Rightarrow$ Any consistent answer.
- $(B : R) \Rightarrow B < R$.
- $(B_1 : B_2) \Rightarrow B_1 < B_2$; transfer B_2 from B to R.
The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least \(n - 1 \) comparisons.

Proof:
- A **useful** comparison decreases the size of \(B \).
- Only \((B_1 : B_2)\) is a useful comparison.
- Each useful comparison decreases the size of \(B \) by 1.
- \(n - 1 \) useful comparisons are required to decrease the size of \(B \) from \(n \) to 1.
Parallel Find the Minimum or the Maximum

Round:
- May contain several comparisons.
- Each key may participate in at most one comparison.

Goals:
- Minimize number of rounds.
- Minimize number of comparisons.
Parallel Find the Minimum for \(n = 2^k \)

Parallel-Find-Min\((A[1], \ldots, A[n])\)

if \(n = 1 \) then return \(A[1] \)

for \(i = 1 \) to \(n/2 \)

if \(A[i] > A[i + (n/2)] \) (* comparison *)

then \(A[i] \leftrightarrow A[i + (n/2)] \)

return Parallel-Find-Min\((A[1], \ldots, A[n/2])\)
Complexity

- **Number of comparisons:**
 - \(\frac{n}{2} + \frac{n}{4} + \cdots + 1 = n - 1 \).
 - The same as in Trivial-Find-Min
 - Optimal.

- **Number of rounds:**
 - \(\log_2 n \); number of recursive calls required to decrease the size of the array \(A \) from \(n \) to 1 by halving.
 - Optimal.
 - **Remark:** In Trivial-Find-Min there are \(n - 1 \) rounds.
Theorem

The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least $\lceil \log_2 n \rceil$ rounds.
Theorem

The adversary forces any algorithm that finds the minimum (or the maximum) to perform at least $\lceil \log_2 n \rceil$ rounds.

Proof:

- At most $\lfloor |B/2| \rfloor$ useful comparisons per round since any key may participate in only one comparison.

- $\lceil \log_2 n \rceil$ rounds are required to decrease the size of B from n to 1 by halving.
Find-Min-and-Max\((A[1], \ldots, A[n]) \)

Find-Min\((A[1], \ldots, A[n]) \)

Find-Max\((A[2], \ldots, A[n]) \)
Find the Minimum & the Maximum (Sol. I)

Find-Min-and-Max($A[1], \ldots, A[n]$)

Find-Min($A[1], \ldots, A[n]$)

Find-Max($A[2], \ldots, A[n]$)

Complexity:

- $(n - 1) + (n - 2) = 2n - 3$ comparisons.
- At most $2 \log_2 n$ rounds using Parallel-Find-Min and Parallel-Find-Max.
Find the Minimum & the Maximum for $n = 2^k$ (Sol. II)

Parallel-Find-Min-and-Max($A[1], \ldots, A[n]$)
for $i = 1$ to $n/2$
 if $A[i] > A[i + (n/2)]$ (* comparison *)
 then $A[i] \leftrightarrow A[i + (n/2)]$
Parallel-Find-Min($A[1], \ldots, A[n/2]$)
Parallel-Find-Max($A[n/2 + 1], \ldots, A[n]$)
Find the Minimum & the Maximum for $n = 2^k$ (Sol. II)

Parallel-Find-Min-and-Max($A[1], \ldots, A[n]$)
for $i = 1$ to $n/2$
 if $A[i] > A[i + (n/2)]$ (* comparison *)
 then $A[i] \leftrightarrow A[i + (n/2)]$
Parallel-Find-Min($A[1], \ldots, A[n/2]$)
Parallel-Find-Max($A[n/2 + 1], \ldots, A[n]$)

Complexity:

- $\frac{n}{2} + 2 (\frac{n}{2} - 1) = \frac{3n}{2} - 2$ comparisons.
- $1 + \log_2(n/2) = \log_2 n$ rounds.
Adversary Strategy – Data Structure

- \mathcal{N} - Candidates for **either** maximum or minimum.
- \mathcal{H} - Candidates **only** for maximum.
- \mathcal{B} - Candidates **only** for minimum.
- \mathcal{R} - Can be **neither** maximum nor minimum.

Initially: $\mathcal{N} = \{A[1], \ldots, A[n]\}$ and $\mathcal{H} = \mathcal{B} = \mathcal{R} = \emptyset$.

At the end: $|\mathcal{H}| = 1$, $|\mathcal{B}| = 1$, $|\mathcal{N}| = 0$, $|\mathcal{R}| = n - 2$.
Adversary Strategy – Answer Rule

- $(R_1 : R_2) \Rightarrow A$ consistent answer.
- $(R : H) \Rightarrow R < H.$
- $(B : R) \Rightarrow B < R.$
- $(N : R) \Rightarrow N < R$ and $N \rightarrow B.$
- $(B : N) \Rightarrow B < N$ and $N \rightarrow H.$
- $(N : H) \Rightarrow N < H$ and $N \rightarrow B.$
- $(N_1 : N_2) \Rightarrow N_1 < N_2$ and $N_1 \rightarrow B$ and $N_2 \rightarrow H.$
- $(B : H) \Rightarrow B < H.$
- $(B_1 : B_2) \Rightarrow B_1 < B_2$ and $B_2 \rightarrow R.$
- $(H_1 : H_2) \Rightarrow H_1 < H_2$ and $H_1 \rightarrow R.$
There Is No Better Algorithm

Theorem

The adversary forces any algorithm that finds the minimum and the maximum to perform at least \(\left\lceil \frac{3n}{2} \right\rceil - 2 \) comparisons.
Theorem

The adversary forces any algorithm that finds the minimum and the maximum to perform at least $\lceil \frac{3n^2}{2} \rceil - 2$ comparisons.

Proof:

- Non-max and non-min keys: $\mathcal{N} \rightarrow \{B, H\} \rightarrow \mathcal{R}$.
- $(N_1 : N_2), (B_1 : B_2)$, and $(H_1 : H_2)$ are useful.
- $(N_1 : N_2)$ is better than $(N : R), (B : N), (N : H)$.
- The rest of the comparisons are not useful.
- Emptying \mathcal{N} requires at least $\lceil \frac{n}{2} \rceil$ useful comparisons.
- The fastest way to leave one key in both B and H requires at least $n - 2$ useful comparisons.
Find the First and the Second

- **Output:** Keys $A[n]$ and $A[n - 1]$:
 - $A[n - 1] \geq A[i]$ for $1 \leq i \leq n - 2$.

- **Goal:** Minimize number of comparisons between keys.
Find the First and the Second – Trivial Solution

Trivial-Find-First-and-Second($A[1], \ldots, A[n]$)

Trivial-Find-Max($A[1], \ldots, A[n]$)

Trivial-Find-Max($A[1], \ldots, A[n-1]$)

Correctness:
By definition.

Complexity:
Exactly ($n - 1$) + ($n - 2$) = $2n - 3$ comparisons.
Find the First and the Second – Trivial Solution

Trivial-Find-First-and-Second\((A[1], \ldots, A[n])\)

\[
\text{Trivial-Find-Max}(A[1], \ldots, A[n])
\]

\[
\text{Trivial-Find-Max}(A[1], \ldots, A[n - 1])
\]

\[
\text{return } (A[n] \geq A[n - 1])
\]

- **Correctness**: By definition.
- **Complexity**: Exactly \((n - 1) + (n - 2) = 2n - 3\) comparisons.
Observation: Only “losers” to **First** can be **Second**.
- Trivial solution: \(n - 1 \) possible losers to **First**.
- Parallel solution: \(\lceil \log n \rceil \) possible losers to **First**.

Parallel Algorithm:
- **First**: Maximum of the original array.
- **Second**: Maximum of the \(\lceil \log_2 n \rceil \) losers to **First**.
Better Solution – Complexity and Optimality

- **Complexity:**
 - \((n - 1)\) comparisons to find First.
 - \((\lceil \log_2 n \rceil - 1)\) comparisons to find Second.
 - \(n + \lceil \log_2 n \rceil - 2\) comparisons to find First and Second.

- **Optimality:** There exists an adversary strategy that forces any algorithm that finds First and Second to perform at least \(n + \lceil \log_2 n \rceil - 2\) comparisons.
The k-Selection Problem

- **Input:**
 - An integer k, $1 \leq k \leq n$.

- **Output:** The key $A[i]$ that is the k smallest key in A.

- **Goal:** Minimize number of **comparisons** between keys.

- **Median:** $k = \lceil n/2 \rceil$ for an odd n.

- **Assumption:** all the n keys are distinct.
Example

[21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123]

- 5 is the 4th smallest and the 8th largest.
- 13 is the median: the 6th smallest and the 6th largest.
- 34 is the 8th smallest and the 4th largest.
Notations

- S_i the set of all the keys that are **smaller** than $A[i]$:

- G_i the set of all the keys that are **greater** than $A[i]$:

Observation: $A[i]$ is the k smallest key iff
 $$|S_i| = k - 1 \quad \text{AND} \quad |G_i| = n - k.$$

Example

\[[21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123] \]

- \(n = 11, \ k = 4. \)
- The \(k \) smallest key is 5.
- \(S_i = \{1, 3, 2\} \Rightarrow |S_i| = k - 1 = 3. \)
- \(G_i = \{21, 34, 8, 55, 13, 89, 123\} \Rightarrow |G_i| = n - k = 7. \)
Possible Solutions to the k-Selection Problem

Solution I:
- **Algorithm:** Sort the array and find the k smallest key.
- **Complexity:** $\Theta(n \log n)$ comparisons.

Solution II:
- **Algorithm:** Repeat finding the minimum key k times.
- **Complexity:** $\Theta(kn)$ comparisons:
 $$(n - 1) + (n - 2) + \cdots + (n - k) = kn - \frac{k(k+1)}{2}.$$

Which one is better?
- **I** is better than **II** for $k = \omega(\log n)$.
- **II** is better than **I** for $k = o(\log n)$.
Randomized Solution

- Select a **pivot** $p = A[i]$ for a random i from the range $[1..n]$.

- **Partition** the array into 2 sets:
 - S the set of all keys that are smaller than p.
 - G the set of all keys that are greater than p.

- **Decision:**
 1. $|S| \geq k$: Recursively select the k smallest in S.
 2. $(|S| = k - 1) \text{ AND } (|G| = n - k)$: Return p.
 3. $|G| \geq n + 1 - k$: Recursively select the $(k - |S| - 1)$ smallest in G.
Example

- **Input:** $A = [21, 34, 8, 5, 55, 13, 1, 3, 89, 2, 123]$ and $k = 4$.
 - $p = 8$: $S = \{5, 1, 3, 2\}$ and $G = \{21, 34, 55, 13, 89, 123\}$.

- **Second instance:** $A = [5, 1, 3, 2]$ and $k = 4$.
 - $p = 2$: $S = \{1\}$ and $G = \{5, 3\}$.

- **Third instance:** $A = [5, 3]$ and $k = 2$.
 - $p = 5$: $S = \{3\}$ and $G = \emptyset$.

- **Output:** The $k = 4$ smallest key is 5.
Observation: The \(k \) smallest key is the \((n + 1 − k)\) largest key.

The sizes of \(S \) and \(G \) determine in which part of the array to look for the \(k \) smallest key.

1. The \(k \) smallest key is in \(S \).
2. The \(k \) smallest key is not in \(S \cup G \) \(\Rightarrow\) it is the pivot.
3. The \(k \) smallest key is in \(G \).
Randomized Solution – Expected Number of Comparisons

A good pivot: \((|S| \leq \frac{3n}{4}) \text{ AND } (|G| \leq \frac{3n}{4})\).

Probabilities facts:
- With probability 1/2 the random pivot is good.
- The expected number of random selections until a good pivot is found is 2.
Modified Randomized Solution

- Repeat selecting a pivot $p = A[i]$ for a random i from the range $[1..n]$ until finding a good pivot.

- Partition the array into the 3 sets: S, E, G.

Decision:

1. $|S| \geq k$: Recursively select the k smallest in S.
2. $(|S| < k) \text{ AND } (|G| < n + 1 - k)$: Return p.
3. $|G| \geq n + 1 - k$: Recursively select the $(k - |S| - |E|)$ smallest in G.
Randomized Solution – Expected Number of Comparisons

- **Expected number of comparisons:** $T(n)$.
 - $\Theta(n)$ to perform one partition.
 - $\Theta(n)$ until a good partition is found.

- $T(n) \leq T(3n/4) + \Theta(n) = \Theta(n)$.
 - The expectation of a sum is the sum of expectations.
\[T(n) = \Theta(n) \text{ – Direct Method} \]

- Assume a **nice** value for \(n \).
- Assume \(T(n) \leq T(3n/4) + \alpha n \) for constant \(\alpha > 0 \).

\[
egin{align*}
T(n) & \leq T(3n/4) + \alpha n \\
& \leq T(9n/16) + (3/4)\alpha n + \alpha n \\
& \leq T(27n/64) + (9/16)\alpha n + (3/4)\alpha n + \alpha n \\
& \vdots \\
& \leq \alpha n + (3/4)\alpha n + (9/16)\alpha n + \cdots + (3/4)^i \alpha n + \cdots \\
& < \alpha n \sum_{i=0}^{\infty} (3/4)^i < \alpha n \left(\frac{1}{1 - (3/4)} \right) = 4\alpha n .
\end{align*}
\]
$T(n) = \Theta(n)$ – Master Theorem

\[T(n) = T\left(\frac{3n}{4}\right) + \Theta(n) \]

- $a = 1$.
- $b = \frac{4}{3}$.
- $\log_b(a) = 0$.
- $d = 1$.
- $d > \log_b(a)$.

\[\Rightarrow \text{Case 3: } T(n) = \Theta(n^d) = \Theta(n). \]
Deterministic Solution to the k-Selection Problem

- Assume a **nice** value for n and ignore ceilings and floors.

- Finding a pivot:
 - **Partition** the array into $n/5$ groups each with 5 keys.
 - **Find** the medians of each one of the $n/5$ groups.
 - **Find** the median of the $n/5$ medians recursively.
 - The **pivot** is the median of the medians.

- The rest of the **procedure** is as the randomized solution.
Deterministic Solution – Illustration

G={greater than pivot}

S={Smaller than pivot}

Pivot
Assume distinct keys and ignore floors and ceilings.

Observations:

- **S** contains the $n/10$ medians that are smaller than the pivot and the $2n/10$ keys that are smaller than these $n/10$ medians.
 \[|S| \geq \frac{3n}{10} \Rightarrow |G| \leq \frac{7n}{10}. \]

- **G** contains the $n/10$ medians that are greater than the pivot and the $2n/10$ keys that are greater than these $n/10$ medians.
 \[|G| \geq \frac{3n}{10} \Rightarrow |S| \leq \frac{7n}{10}. \]
\(\Theta(n) \) Worst Case Number of Comparisons

- **Worst case complexity:** \(T(n) \).
 - \(\Theta(n) \) to find the \(n/5 \) medians.
 - \(T(n/5) \) to find the median of the medians.
 - \(\Theta(n) \) to perform the partition.
 - At most \(T(7n/10) \) for the recursion.

- \(T(n) \leq T(7n/10) + T(n/5) + \Theta(n) = \Theta(n) \).
 - Because \(7n/10 + n/5 = (1 - \varepsilon)n \) for a constant \(\varepsilon \).
Solving the Recursive Formula

Formula: \(T(n) \leq T(7n/10) + T(n/5) + \alpha n. \)
- For some constant \(\alpha \) that is independent of \(n \).

Guess: \(T(n) \leq \beta n. \)
- For some constant \(\beta \) that is independent of \(n \).

Induction: \(T(n) \leq \beta(7n/10) + \beta(n/5) + \alpha n \)
\[= ((7\beta/10) + (\beta/5) + \alpha) n. \]

Set: \(\beta = 10\alpha \Rightarrow T(n) \leq ((7\beta/10) + (\beta/5) + (\beta/10)) n. \)

Conclude: \(T(n) \leq \beta n \leq 10\alpha n. \)
The Value of the Constants α and β

Finding all the $n/5$ medians:
- The median of 5 keys can be found with 6 comparisons.
- $6(n/5) = 1.2n$ comparisons to find all the medians.

$(2/5)n = 0.4n$ comparisons, only with the keys not in $S \cup G$, to perform the partition.

$\Rightarrow \alpha \leq 1.6$.

$\Rightarrow \beta \leq 10\alpha \leq 16$.

$\Rightarrow T(n) \leq \beta n \leq 16n$.
Why Not Groups of 3?

- S contains the $n/6$ medians that are smaller than the pivot and the $n/6$ keys that are smaller than these $n/6$ medians.
 \[\Rightarrow |S| \geq n/3 \Rightarrow |G| \leq 2n/3. \]

- Similarly, $|S| \leq 2n/3$.

- At most $T(2n/3)$ for the recursion.

- $T(n/3)$ to find the median of the medians.

- Therefore, $T(n) \leq T(2n/3) + T(n/3) + \Theta(n)$.

- The solution to this recursive formula is $T(n) = \Theta(n \log n)$.
Groups of $2k + 1$

- At most $T \left(\frac{(3k+1)n}{4k+2} \right)$ for the recursion.

- $T \left(\frac{n}{2k+1} \right)$ to find the median of the medians.

- $T(n) \leq T \left(\frac{(3k+1)n}{4k+2} \right) + T \left(\frac{n}{2k+1} \right) + \Theta(n) = \Theta(n)$.

Therefore, $T(n) \leq \beta_k n$ for a constant β_k that depends on k but independent on n.

The best k is determined by the number of comparisons required to find all the $n/(2k + 1)$ medians and the number of comparisons needed to complete the partition.
The k-Selection Problem Complexity

- **Lower bound**: $\Omega(n)$ comparisons are required for selecting the minimum.

- **Randomized upper bound**: $\Theta(n)$.

- **Deterministic upper bound**: $\Theta(n)$.

- **Complexity**: $\Theta(n)$ average and worst case.
The k-Selection Problem Known Bounds

- **First linear upper bound:** $T(n) \leq 5.43n$.
- **Best upper bound:** $T(n) \leq 2.95n + o(n)$.
- **Simple lower bound:** $T(n) \geq 1.5n$.
- **Best lower bound:** $T(n) \geq 2n + o(n)$.

Amotz Bar-Noy (CUNY)