Graph Algorithms

Tours in Graphs
Special Paths and Cycles in Graphs

Euler Path: A path that traverses all the edges of the graph exactly once.

Euler Cycle: A cycle that traverses all the edges of the graph exactly once.

Hamilton Path: A simple path that visits all the vertices of the graph exactly once.

Hamilton Cycle: A simple cycle that visits all the vertices of the graph exactly once.
An Euler Path
An Euler Cycle
A Hamilton Path
A Hamilton Cycle
An Euler Path (or an Euler Cycle), if exists, can be found in any graph with m edges in $O(m)$-time.

Finding a Hamilton Path or a Hamilton Cycle:
- A hard to solve problem. It is strongly believed that no polynomial time algorithm exists to solve these problems.
- A simple special case of the Traveller Salesperson Problem (TSP).
Euler Paths and Cycles in Undirected Graphs

Edge representation path: \(P = (e_0, e_1, \ldots, e_{m-1}) \).

⋆ \(P \) is an Euler Path in a graph with \(m \) edges if

1. \(e_i \neq e_j \) for all \(0 \leq i \neq j < m \).
2. \(e_i = (x, y) \) and \(e_{i+1} = (y, z) \) for \(0 \leq i < m - 1 \) and vertices \(x, y, z \).

⋆ An Euler Cycle \(C \) is an Euler Path \(P \) for which

1. \(e_{m-1} = (x, y) \) and \(e_0 = (y, z) \) for vertices \(x, y, z \).
Euler Paths and Cycles in Directed Graphs

Edge representation path: \(P = (e_0, e_1, \ldots, e_{m-1}) \)

\(P \) is an Euler Path in a directed graph with \(m \) edges if

- \(e_i \neq e_j \) for all \(0 \leq i \neq j < m \).

- \(e_i = (x \to y) \) and \(e_{i+1} = (y \to z) \)
 for \(0 \leq i < m - 1 \) and vertices \(x, y, z \).

An Euler Cycle \(C \) is an Euler Path \(P \) for which

- \(e_{m-1} = (x \to y) \) and \(e_0 = (y \to z) \) for vertices \(x, y, z \).
The bridges of Königsberg

No Euler Cycle or Euler Path exist!!!
A Toy Example

The left graph has no Euler Path.

The middle graph has an Euler Path but not an Euler Cycle.

The right graph has an Euler Cycle.
Theorem: An undirected and connected graph has an Euler Cycle iff all the vertices have an even degree.

Remark: A self-loop adds 2 to the degree of the vertex.

The only-if direction:

☆ Let \(C = (e_0, e_1, \ldots, e_{m-1}) \) be an Euler Cycle.
☆ Let \(y \) be a vertex.
☆ If \(e_i = (x, y) \) then \(e_{i+1} = (y, z) \ ((m - 1) + 1 = 0) \).
 – Therefore the degree of \(y \) must be even.
Proof: The If Direction

★ Assume all the degrees are even.

★ Construct an $O(m)$-time algorithm producing an Euler Cycle represented by vertices.
 - Each edge is examined constant number of times with an appropriate data structure.

★ Main idea: Explore unused edges as long as they exist.
Edges are marked either used or unused.
 - Initially all the edges are marked unused.
 - At the end all the edges are marked used.

An arbitrary starting vertex x.

A main cycle C.
 - Initially C is empty.
 - At the end C contains all the edges.

An exploring path $P = (y, \ldots)$.
 - Initially $P = (x)$.
 - At the end P is empty.

A secondary cycle C'.
 - Initially and at the end C' is empty.
Finding a Secondary Cycle

★ Let $P = (y, \ldots, z)$ be the exploring path.

★ While z (the last vertex in P) has unused edges:
 - Let (z, w) be an unused edge.
 - Mark (z, w) as used.
 - Append w at the end of P: $P = (y, \ldots, z, w)$.

★ Let the secondary cycle $C' = P = (y, \ldots, y)$.
 - Need to prove: this process terminates only at y.
Let $C = (x, \ldots, a, y, b, \ldots, x)$ be the main cycle.

Let $C' = (y, c, \ldots, d, y)$ be the secondary cycle.

Then $C' = (x, \ldots, a, y, c, \ldots, d, y, b, \ldots, x)$.
The Algorithm

★ Find the first secondary cycle C':

- Start the exploring path with x.
- The first main cycle C is C'.

★ While there exists an unused edge:

- Find y in C with an unused edges.
- Find a secondary cycle C' starting with y.
- Combine the cycles C and C' into C.

★ Return the cycle C.
Correctness: Key Observations

• Since all the edges have an even degree it follows that the finding a secondary cycle procedure can be stuck only at y which is the first vertex of the exploring path.

• If the main cycle C does not contain all the edges in the graph, then it must contain a vertex with an unused edge due to connectivity.
Complexity

- Each edge is explored only once when it is unused and then becomes used forever.

- Can be done in $O(m)$-time with adjacency lists.

- Each edge is traversed only once while looking for a vertex with an unused edge in the main cycle.

- Can be done if the main cycle is a linked list and if the algorithm remembers the last starting vertex for the exploring path.
There are at most \(n - 1 \) cycle combinations since a new exploring path never reaches again the connecting vertex.

A combination can be done in \(O(1) \)-time if the cycles are maintained as double linked lists.

Hence, \(O(m) \) complexity in connected graphs \((n \leq m) \).
Directed Graphs

- In a strongly connected graph there exists a directed path between any two vertices.

- The in-degree of a vertex x – $d_{in}(x)$ – is the number of edges terminating at x.

- The out-degree of a vertex x – $d_{out}(x)$ – is the number of edges originating at x.

Theorem: A directed and strongly connected graph has an Euler Cycle iff $d_{in}(x) = d_{out}(x)$ for each vertex x.
Theorem: An undirected and connected graph has an Euler Path if at most 2 vertices have an odd degree.

Theorem: A strongly connected directed graph has a directed Euler Path starting with x and ending at y, $x \neq y$, if:

$\star d_{in}(z) = d_{out}(z)$ for any vertex $z \notin \{x, y\}$.

$\star d_{in}(x) = d_{out}(x) - 1$.

$\star d_{in}(y) = d_{out}(y) + 1$.
Lemma: In an undirected graph the number of vertices with odd degree is even.

Definition: k disjoint paths cover a graph G if each edge of G belongs to one of the k paths.

Theorem: A connected directed graph with $2k$ vertices with an odd degree can be covered with k disjoint paths.
Proof

★ Match the odd-degree $2k$ vertices with k new edges.
★ All the vertices in the new graph have an even degree.
★ Find an Euler Cycle in the new graph.
★ The new edges are not adjacent in the Euler Cycle since each vertex belongs to at most one new edge.
★ Omit the k new edges from the Euler Cycle.
★ The cycle split to k paths that cover all the edges.
De-Bruijn Sequences

★ $\Sigma = \{0, 1, \ldots, \sigma - 1\}$ – an alpha-bet of σ letters.

★ There exists σ^ℓ distinct words of length ℓ over Σ.

★ $\sigma = 2$ and $\ell = 3$:

 000, 001, 010, 011, 100, 101, 110, 111.

★ $\sigma = 3$ and $\ell = 2$:

 00, 01, 02, 10, 11, 12, 20, 21, 22.
A cyclic sequence $S_{\sigma, \ell} = a_0, a_1, \ldots, a_{L-1}$ of length $L = \sigma^\ell$ is called a De-Bruijn sequence if for any word w of length ℓ over Σ there exists a unique index $0 \leq i < L$ such that $w = a_i, a_{i+1}, \ldots, a_{i+\ell-1}$ (the addition is done mod L).

- $\sigma = 2$ and $\ell = 3 \implies 00011101$.
- $\sigma = 3$ and $\ell = 2 \implies 001122021$.
Directed De-Bruijn graphs

$G_{\sigma, \ell} = (V_{\sigma, \ell}, E_{\sigma, \ell})$ is a De-Bruijn graph:

★ **Vertices:** all the $n = \sigma^{\ell-1}$ words of length $\ell - 1$.
 - $V_{2,4} = \{000, 001, \ldots, 111\}$.
 - $V_{3,3} = \{00, 01, \ldots, 22\}$.

★ **Edges:** all the $m = \sigma^\ell$ words of length ℓ.
 - $E_{2,4} = \{0000, 0001, \ldots, 1111\}$.
 - $E_{3,3} = \{000, 001, \ldots, 222\}$.

★ The edge (b_1, \ldots, b_ℓ) connects the vertices:

$$(b_1, b_2, \ldots, b_{\ell-1}) \longrightarrow (b_2, \ldots, b_{\ell-1}, b_\ell)$$
$G_{2,3}$
$G_{3,2}$
Lemma: For all positive integers σ and ℓ there exists a directed Euler Cycle in $G_{\sigma,\ell}$.

Proof: $G_{\sigma,\ell}$ is strongly connected and for any vertex in-degree = out-degree = σ.

Lemma: An Euler Cycle in $G_{\sigma,\ell}$ implies a De-Bruijn sequence $S_{\sigma,\ell}$.

Proof: Follow the Euler Cycle. Initially the sequence is the first vertex on the path. Append only the last letter of the next vertex to the current sequence.

Theorem: For all positive integers σ and ℓ there exists a De-Bruijn sequence $S_{\sigma,\ell}$.
Euler Cycle: 00 → 00 → 01 → 11 → 11 → 10 → 01 → 10 → 00

De-Bruijn sequence: 00011101
Euler Cycle: 0 → 0 → 1 → 1 → 2 → 2 → 0 → 2 → 1 → 0

De-Bruijn sequence: 001122021
A path of vertices: \(P = (v_0, v_1, \ldots, v_{n-1}) \).

\(P \) is a Hamilton Path in a graph with \(n \) vertices if

- \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
- \((v_i, v_{i+1})\) is an edge for \(0 \leq i < n - 1 \).

A Hamilton Cycle \(C \) is a Hamilton Path \(P \) for which \((v_{n-1}, v_0)\) is also an edge.
Directed Hamilton Paths and Cycles

★ A directed path of vertices: \(P = (v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_{n-1}) \)

★ \(P \) is a directed Hamilton Path in a graph with \(n \) vertices if
 - \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
 - \((v_i \rightarrow v_{i+1}) \) is a directed edge for \(0 \leq i < n - 1 \).

★ A directed Hamilton Cycle \(C \) is a directed Hamilton Path \(P \) for which \((v_{n-1} \rightarrow v_0) \) is also an edge.
• There is no Hamilton Cycle.

• The following is a Hamilton Path:

\[P = (A, B, C, D, E, J, H, F, I, G) \]
Definition: The **Knight-Chess** graph has 64 vertices one for each square on the 8×8 chess board. 2 vertices are adjacent iff a knight can move from one to another in one step.
The Knight-Chess Problem

Problem: Is it possible to cover all the squares of the chess board with knight moves?

An equivalent formulation: Does the Knight-Chess graph has a Hamilton path?
Definition: A tournament is a simple directed graph such that for each pair of vertices u and v, either the directed edge $u \to v$ exists or the directed edge $v \to u$ exists but not both and not none.

Observation: There are exactly $\binom{n}{2}$ directed edges in a tournament with n vertices.

Observation: The underlying graph of a tournament with n vertices is the complete graph K_n.

Theorem: A tournament always has a Hamilton path.
A Tournament with 6 Vertices
A Hamilton Path in the Tournament
A Hamilton Cycle in the Tournament
Algorithm to find Hamilton Path in a Tournament

1. Start with the path $P_1 = (v_1)$ for an arbitrary vertex v_1.
2. Let the current path be $P_i = (v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_i)$ for $1 \leq i \leq n$.
3. If $i = n$, terminate with the Hamilton Path P_n.
4. Let v be a vertex not in the path.
5. Insert v into P_i to get the path P_{i+1}.
Path Augmentation

⋆ If \((v \rightarrow v_1)\) is an edge, then \(P_{i+1} = (v \rightarrow v_1 \rightarrow \cdots \rightarrow v_i)\).

⋆ If \((v_i \rightarrow v)\) is an edge, then \(P_{i+1} = (v_1 \rightarrow \cdots \rightarrow v_i \rightarrow v)\).

⋆ Otherwise \(\exists 1 \leq j < i\) s.t. \((v_j \rightarrow v)\) and \((v \rightarrow v_{j+1})\) are edges, then \(P_{i+1} = (v_1 \rightarrow v_j \rightarrow v \rightarrow v_{j+1} \cdots \rightarrow v_i)\).
The Algorithm is Correct

- The path augmentation is always successful.

- Therefore, eventually P_n exists which is a Hamilton Path.
The Algorithm is Efficient

- Inserting a vertex to a path can be done in $O(n)$ time using the adjacency matrix.
- There are n iterations.
- The total complexity is $O(n^2)$.
- With a binary search for the insertion point, the algorithm probs the adjacency matrix $O(n \log n)$ times. But the overall complexity is still $O(n^2)$.
A Hamilton Cycle Greedy Algorithm: Outline

★ As long as possible, construct a path by adding vertices to both end-vertices of the path.

★ Close this path into a cycle by either connecting both end-vertices or by finding a switch vertex.

★ Connect a new vertex to the cycle and break it to be a new longer path.

★ Repeat the above process until either a Hamilton Cycle is found or an operation is impossible.
Converting a Path to a Cycle
Converting a Cycle to a Path
A Hamilton Cycle Greedy Algorithm: Description

(1) Initially, let $P = (x)$ be a path with an arbitrary vertex x.

(2) Expand the path P from both ends until impossible. Let $P = (x_0 - x_1 - \cdots - x_h)$ where there are no edges from x_0 and x_h outside P.

(3) If (x_0, x_h) is an edge then construct the cycle $C = (x_0 - x_1 - \cdots - x_h - x_0)$. Goto step 6.

(4) If for some $0 < i < h$ the edges (x_0, x_{i+1}) and (x_i, x_h) exist, then construct the cycle $C = (x_0 - x_1 - \cdots - x_i - x_h - x_{h-1} - x_{i+1} - x_0)$. Goto step 6.
Greedy Algorithm to find an Undirected Hamilton Cycle

(5) Terminate Unsuccessfully with the path \(P \).

(6) If \(h = n - 1 \) then Terminate Successfully with the Hamilton Cycle \(C \).

(7) If there is no edge from \(C \) outside of \(C \), then Terminate Unsuccessfully with the cycle \(C \).

(8) Let \((x_i, x)\) be an arbitrary edge from \(C \) to outside of \(C \), then construct the path

\[
P = (x - x_i - x_{i+1} - \cdots - x_h - x_0 - \cdots - x_{i-1}).
\]

(9) Goto step 2 with a longer path.
Theorem: Let G be a connected graph with n vertices. If $d(u) + d(v) \geq n$ for any two vertices $u \neq v$ in G, then G has a Hamilton Cycle.

Corollary: Let G be a connected graph with n vertices. If $d(u) \geq n/2$ for any vertex u in G, then G has a Hamilton Cycle.
Proof of the Theorem

★ Step 4, whenever executed, is always successful.

★ Therefore, the algorithm never reaches step 5.

★ The algorithm never terminates in step 7 since the graph is connected.

★ The algorithm terminates successfully with a Hamilton Cycle in step 6 since the path is longer in each iteration.
Why Step 4 is Always Successful?

★ Assume that step 4 fails for $h \leq n - 1$ with the path
$$P = (x_0 - x_1 - \cdots x_{h-1} - x_h).$$
★ Let $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ be the neighbors of x_0 in P.

★ $\Rightarrow x_{i_1-1}, x_{i_2-1}, \ldots, x_{i_k-1}$ cannot be neighbors of x_h.

★ $\Rightarrow d(x_h) \leq h - k \leq n - 1 - k$.

★ $\Rightarrow d(x_0) + d(x_h) < n$.

★ A contradiction.
Represent the graph with an adjacency matrix.

Augmenting a path by one vertex at its end-point can be done in $O(n)$ time for a total of $O(n^2)$ for all the augmentations.

Converting a path into a cycle can be done in $O(n)$ time for a total of $O(n^2)$ for all such conversions.

All the conversions of cycles into paths can be done in $O(n^2)$ by scanning the adjacency matrix only once.

⇒ The algorithm time complexity is $O(n^2)$.