Graph Traversals

- **Input:** A simple, undirected, and connected graph $G = (V, E)$ with $|V| = n$ vertices and $|E| = m$ edges.

- **Objective:** Find a traversal path that
 - visits all the vertices of the graph and
 - traverses all the edges of a graph.

- **Remark:** Vertices can be visited more than once and edges can be traversed more than once.
Graph Traversals – General Scheme

- **Start** with one of the vertices and **traverse** one of its incident edges to reach another vertex.
 - Connectivity implies that this is always possible.

- Using traversed edges, **go** to one of the visited vertices that has an incident untraversed edge.
 - Connectivity implies that this is always possible.

- **Traverse** this untraversed edge.

- **Continue** until all the edges are traversed.
 - Connectivity implies that all vertices are visited.
Efficiency objectives:
- Apply simple rules to find an untraversed edge.
- Implement with an efficient data structure.
- Finish fast in $O(m)$ running time.

Example: An Euler path is the shortest possible traversal path if exists – no edge is traversed more than once.
Variants

- **Directed graphs:** An edge is traversed only from its origin to its destination.

- **Disconnected graphs:**
 - When stuck, **jump** to an unvisited vertex.
 - **Continue** until all vertices are visited and all edges are traversed.
 - Finish **fast** in $O(n + m)$ running time.
Example

Traversal path: A
Example

Traversal path: AB
Traversal path: \textit{ABE}
Traversal path: \textit{ABED}
Traversal path: \textit{ABEDF}
Traversal path: **ABEDFE**
Traversal path: \textit{ABEDFEB}
Example

Traversal path: \textit{ABEDFEBCE}
Example

Traversal path: \textit{ABEDFEBCA}
Traversal path: **ABEDFEBCAD**
Example

Traversal path: $ABEDFEBCADF$
Example

Traversal path: \textit{ABEDFEBCADFC}
Traversals Trees

- **The tree structure:** a *rooted*, *ordered*, and *directed* tree.
 - The first visited vertex is the *root* of the tree.
 - Vertex u is the *parent* of v if the first visit to v happened after traversing the edge (u, v).
 - The children of a vertex u are ordered according to the time they were first visited from u.

Edge classification:
- **Tree edge:** an edge from a vertex to one of its children.
- **Back edge:** an edge from a vertex to one of its ancestors.
- **Forward edge:** an edge from a vertex to one of its descendants which is not its child.
- **Cross edge:** an edge from a vertex to another vertex that is neither one of its ancestors nor one of its descendants in the traversal tree.
Traversal Trees

- **The tree structure:** a rooted, ordered, and directed tree.
 - The first visited vertex is the *root* of the tree.
 - Vertex u is the *parent* of v if the first visit to v happened after traversing the edge (u, v).
 - The children of a vertex u are ordered according to the time they were first visited from u.

- **Edge classification:**
 - **Tree edge:** an edge from a vertex to one of its children.
 - **Back edge:** an edge from a vertex to one of its ancestors.
 - **Forward edge:** an edge from a vertex to one of its descendants which is not its child.
 - **Cross edge:** an edge from a vertex to another vertex that is neither one of its ancestors nor one of its descendants in the traversal tree.
Example

Traversal path: \(A \)
Example

Traversal path: AB
Traversal path: ABE
Example

Traversal path: \(ABED\)
Traversal path: \textit{ABEDF}
Example

Traversal path: $ABEDFE$
Traversal path: \textit{ABEDFEB}
Example

Traversal path: \textit{ABEDFEBBC}
Traversal path: $ABEDFEBCA$
Example

Traversal path: \(ABEDFEBCADE \)
Traversal path: $ABEDFEBCADF$
Traversal path: $ABEDFEBCADFC$
DFS – Depth First Search

- **Visiting order:** Visit a vertex, then recursively visit all of its neighbors in order.

- **Input:** An undirected graph $G = (V, E)$ and a global order on the n vertices.

- **Output:** A traversal forest that contains a traversal tree for each connected component of the graph.

- **Directed graphs:**
 - In the traversal forest, each tree is a directed tree.
 - In each tree, there is a directed path from the root to any other vertex.
Example – a DFS traversal Path

Traversal path: A
Example – a DFS traversal Path

Traversal path: AB
Example – a DFS traversal Path

Traversal path: ABC
Example – a DFS traversal Path

Traversal path: \textit{ABCA}
Example – a DFS traversal Path

Traversal path: ABCAC
Example – a DFS traversal Path

Traversal path: ABCACF
Example – a DFS traversal Path

Traversal path: $ABCACFD$
Example – a DFS traversal Path

Traversal path: **ABCACFDA**
Example – a DFS traversal Path

Traversal path: $\textit{ABCACFDAD}$
Example – a DFS traversal Path

Traversal path: \textit{ABCACFDADE}
Example – a DFS traversal Path

Traversal path: $ABCACFDADEB$
Example – a DFS traversal Path

Traversal path: $ABCACFDADAEBC$
Example – a DFS traversal Path

Traversal path: ABCACFDADEBEF
Example – a DFS traversal Path

Traversal path: \textit{ABCACFDADEBEF – EDFCBA}
Example – the DFS traversal Tree

Traversal path: A
Example – the DFS traversal Tree

Traversal path: AB
Example – the DFS traversal Tree

Traversal path: \(ABC \)
Example – the DFS traversal Tree

Traversal path: \textit{ABCA}
Example – the DFS traversal Tree

Traversal path: $ABCAC$
Example – the DFS traversal Tree

Traversal path: $ABCACF$
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFD}
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFDA}
Example – the DFS traversal Tree

Traversal path: $ABCACFDAD$
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFDADE}
Example – the DFS traversal Tree

Traversal path: **ABCACFDADEB**
Example – the DFS traversal Tree

Traversal path: \(ABCACFDADEBE\)
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFDADDEBEF}
Variables for the DFS Procedure

- Each vertex is colored by one of the following colors:
 - **White**: The recursive visit has not started.
 - **Gray**: The recursive visit started but not finished.
 - **Black**: The recursive visit finished.

A global discrete time variable $time$ that is updated when a vertex becomes **Gray** and when a vertex becomes **Black**.

- $d(v)$: The time vertex v becomes **Gray**.
- $f(v)$: The time vertex v becomes **Black**.

A parenthood function $\Pi(v)$ in the traversal forest:
- $\Pi(v) = \text{nil}$ if v is a root of a tree in the forest.
- $\Pi(v)$ is v's parent in the traversal tree that contains v.
Variables for the DFS Procedure

Each vertex is colored by one of the following colors:

- **White**: The recursive visit has not started.
- **Gray**: The recursive visit started but not finished.
- **Black**: The recursive visit finished.

A global discrete time variable \(\text{time} \) that is updated when a vertex becomes **Gray** and when a vertex becomes **Black**.

- \(d(v) \): The time vertex \(v \) becomes **Gray**.
- \(f(v) \): The time vertex \(v \) becomes **Black**.
Variables for the DFS Procedure

Each vertex is colored by one of the following colors:
- **White**: The recursive visit has not started.
- **Gray**: The recursive visit started but not finished.
- **Black**: The recursive visit finished.

A global discrete time variable **time** that is updated when a vertex becomes **Gray** and when a vertex becomes **Black**.
- **d(v)**: The time vertex v becomes **Gray**.
- **f(v)**: The time vertex v becomes **Black**.

A parenthood function **Π(v)** in the traversal forest:
- **Π(v) = nil** if v is a root of a tree in the forest.
- **Π(v)** is v’s parent in the traversal tree that contains v.
The DFS Procedure – Initial Call

\[
\text{DFS}(G) \\
\text{for each vertex } v \in V \text{ do} \\
\quad \text{Color}(v) = \text{White} \\
\quad \Pi(v) = \text{nil} \\
\quad \text{time} = 0 \\
\text{for each vertex } v \in V \text{ do} \\
\quad \text{if Color}(v) = \text{White then} \\
\quad \text{DFS-Visit}(v)
\]
The DFS Procedure – Recursive Call

DFS-Visit(v)

- $Color(v) = Gray$
- $time++$
- $d(v) = time$
- **for each** neighbor u of v **do**
 - **if** $Color(u) = white$ **then**
 - $\Pi(u) = v$
 - **DFS-Visit**(u)
 - $Color(v) = Black$
- $time++$
- $f(v) = time$
Example – Directed DFS

time = 0
Example – Directed DFS

\[\text{time} = 1 \]
Example – Directed DFS

time = 2
Example – Directed DFS

\[time = 3 \]
Example – Directed DFS

time = 4
Example – Directed DFS

time = 5
Example – Directed DFS

votes = 6
Example – Directed DFS

time = 7
Example – Directed DFS

time = 8
Example – Directed DFS

\[\text{time} = 9 \]
Example – Directed DFS

![Directed DFS Diagram]

\[\text{time} = 10 \]
Example – Directed DFS

\[\text{time} = 11 \]
Example – Directed DFS

time = 12
DFS – Correctness

Lemma: DFS visits all the vertices.

Proof: Each vertex changes colors as follows: \(\text{White} \rightarrow \text{Gray} \rightarrow \text{Black} \)

Lemma: DFS traverses all the edges.

Proof: For each vertex, DFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
Lemma: DFS visits all the vertices.

Proof: Each vertex changes colors as follows:

\[\text{White} \rightarrow \text{Gray} \rightarrow \text{Black} \]

Lemma: DFS traverses all the edges.

Proof: For each vertex, DFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.

Traversal Path:

- In undirected graphs the traversal path is not explicit. Traversing back the edges is done implicitly due to the recursive calls.
- In directed graphs the traversal path sometimes uses the wrong direction due to the recursion.
DFS – Time Complexity

Adjacency lists: $\Theta(n + m)$.

- $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.

- $\Theta(n)$: Each vertex is colored three times.
DFS – Time Complexity

- **Adjacency lists:** $\Theta(n + m)$.
 - $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.
 - $\Theta(n)$: Each vertex is colored three times.

- **Adjacency matrix:** $\Theta(n^2)$.
 - $\Theta(n)$: For each vertex, for examining all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
Definition: The DFS interval of vertex v is $[d(v), f(v)]$.

Lemma: Assume $d(u) < d(v)$ for an edge (u, v):
- Either the intervals of u and v are disjoint
 $$d(u) < f(u) < d(v) < f(v).$$
- Or u’s interval contains v’s interval
 $$d(u) < d(v) < f(v) < f(u).$$
Example – Time Intervals

\begin{align*}
time = 1 & \quad A = \text{Gray} \quad d(A) = 1 \\
time = 2 & \quad B = \text{Gray} \quad d(B) = 2 \\
time = 3 & \quad C = \text{Gray} \quad d(C) = 3 \\
time = 4 & \quad C = \text{Black} \quad f(C) = 4 \\
time = 5 & \quad E = \text{Gray} \quad d(E) = 5 \\
time = 6 & \quad D = \text{Gray} \quad d(D) = 6 \\
time = 7 & \quad D = \text{Black} \quad f(D) = 7 \\
time = 8 & \quad E = \text{Black} \quad f(E) = 8 \\
time = 9 & \quad B = \text{Black} \quad f(B) = 9 \\
time = 10 & \quad A = \text{Black} \quad f(A) = 10 \\
time = 11 & \quad F = \text{Gray} \quad d(F) = 11 \\
time = 12 & \quad F = \text{Black} \quad f(F) = 12
\end{align*}
Example – Time Intervals

A

B

C

D

E

F

1 2 3 4 5 6 7 8 9 10 11 12
DFS – Traversal Tree Edge Classification

- **A tree edge (T):** An edge from a *Gray* vertex to a *White* vertex.

- **A back edge (B):** An edge from a *Gray* vertex to a *Gray* vertex.

- **A forward edge (F):** An edge from a *Gray* vertex to a *Black* vertex whose interval is nested.

- **A cross edge (C):** An edge from a *Gray* vertex to a *Black* vertex whose interval finished.
Example – Edge Classification

(A,B) \(\text{Gray} \rightarrow \text{White}\)
(B,C) \(\text{Gray} \rightarrow \text{White}\)
(B,E) \(\text{Gray} \rightarrow \text{White}\)
(E,D) \(\text{Gray} \rightarrow \text{White}\)
(D,A) \(\text{Gray} \rightarrow \text{Gray}\)
(A,C) \(\text{Gray} \rightarrow \text{Black}\) (nested)
(F,C) \(\text{Gray} \rightarrow \text{Black}\) (finished)
(F,D) \(\text{Gray} \rightarrow \text{Black}\) (finished)
(F,E) \(\text{Gray} \rightarrow \text{Black}\) (finished)
Lemma: DFS has no forward and no cross edges.

Proof:

1. There is no edge from a *Gray* vertex to a *Black* vertex.
2. Otherwise, the *Black* vertex, before becoming black, would examine its incident edge to the *Gray* vertex in the other direction.
Cycles in Undirected Graphs

Theorem: An undirected graph has a cycle if and only if the DFS creates at least one back edge.
Cycles in Undirected Graphs

- **Theorem**: An undirected graph has a cycle iff the DFS creates at least one **back** edge.

- **Proof** \(\iff\)
 - Suppose that \((u, v)\) is a **back** edge examined at \(u\).
 - Then \(v\) is an ancestor of \(u\).
 - Therefore, there exists a path from \(v\) to \(u\).
 - Adding \((u, v)\) to the path creates a cycle.
Cycles in Undirected Graphs

Theorem: An undirected graph has a cycle iff the DFS creates at least one **back** edge.

Proof ⇒

- Suppose that \(C \) is a cycle in \(G \).
- Let \(v \) be the first *Gray* vertex in \(C \).
- Let \((u, v)\) be the preceding edge in \(C \).
- After time \(d(v) \), DFS explores the \(v \) to \(u \) path.
- When \((u, v)\) is traversed, both \(v \) and \(u \) are *Gray*.
- Hence, \((u, v)\) is a **back** edge.
DFS – Application

Problem:

- Is an undirected graph a forest or a tree?
- Does an undirected graph have a cycle?

Algorithm:

Run the DFS algorithm.

Terminate if a back edge is found.

Time complexity: \(O(n)\).

If there are no cycles there are \(O(n)\) edges. Therefore, the DFS time complexity \(O(m + n)\) becomes \(O(n)\).

If there exists a cycle, the algorithm terminates the first time a Gray vertex is visited for a second time.
Problem:

- Is an undirected graph a forest or a tree?
- Does an undirected graph have a cycle?

Algorithm:

- Run the DFS algorithm.
- Terminate if a **back** edge is found.
Problem:
- Is an undirected graph a forest or a tree?
- Does an undirected graph have a cycle?

Algorithm:
- Run the DFS algorithm.
- Terminate if a back edge is found.

Time complexity: $O(n)$.
- If there are no cycles there are $O(n)$ edges. Therefore, the DFS time complexity $O(m + n)$ becomes $O(n)$.
- If there exists a cycle, the algorithm terminates the first time a Gray vertex is visited for a second time.
Theorem: A directed graph G is DAG iff running DFS on G does not produce a back edge.
Theorem: A directed graph G is DAG iff running DFS on G does not produce a *back* edge.

Proof \Rightarrow

- Suppose that $(u \rightarrow v)$ is a *back* edge.
- Then v is an ancestor of u.
- Therefore, there exists a directed path from v to u.
- Adding $(u \rightarrow v)$ to the path creates a directed *cycle*.
Theorem: A directed graph G is DAG iff running DFS on G does not produce a back edge.

Proof \Leftarrow

- Suppose that C is a directed cycle in G.
- Let v be the first Gray vertex in C.
- Let $(u \rightarrow v)$ be the preceding edge in C.
- After time $d(v)$, DFS explores the v to u directed path.
- When $(u \rightarrow v)$ is traversed, both v and u are Gray.
- Hence, $(u \rightarrow v)$ is a back edge.
Definition: A topological sort of a DAG is a linear ordering of its vertices such that vertex u appears before vertex v for any directed edge $(u \rightarrow v)$.

Problem: Find one of the topological sorts of a DAG.
Topological Sort of a DAG

Definition: A **topological sort** of a DAG is a linear ordering of its vertices such that vertex \(u \) appears before vertex \(v \) for any directed edge \((u \to v) \).

Problem: Find one of the topological sorts of a DAG.

Algorithm:

- **Create** an empty linked list.
- **Run** DFS on the DAG.
- A vertex becomes **Black**: add it to the front of the list.
- **Return** the linked list as a topological sort.
Example
Example
The Algorithm Finds a Topological Sort for a DAG

- **Correctness:**
 - Consider examining the edge \((u \rightarrow v)\).
 - At this time \(u\) is *Gray*.
 - \(v\) is not *Gray* since then \((u \rightarrow v)\) is a *back* edge.
 - If \(v\) is *White* then \(f(v) < f(u)\) since \(v\) becomes *Black* before \(u\).
 - If \(v\) is *Black* then \(f(v) < f(u)\) since \(u\) is still *Gray*.
 - \(f(v) < f(u)\) implies that \(u\) appears before \(v\) in the list.
The Algorithm Finds a Topological Sort for a DAG

Correctness:

- Consider examining the edge \((u \rightarrow v)\).
- At this time \(u\) is *Gray*.
- \(v\) is not *Gray* since then \((u \rightarrow v)\) is a **back** edge.
- If \(v\) is *White* then \(f(v) < f(u)\) since \(v\) becomes *Black* before \(u\).
- If \(v\) is *Black* then \(f(v) < f(u)\) since \(u\) is still *Gray*.
- \(f(v) < f(u)\) implies that \(u\) appears before \(v\) in the list.

Complexity:

- \(\Theta(n + m)\) running time.
- The same complexity as DFS.
Visiting order: Visit a vertex, then visit all of its neighbors, then visit all of the neighbors of its neighbors, ...

Input: An undirected graph $G = (V, E)$ and a global order on the n vertices.

Output: A traversal forest that contains a traversal tree for each connected component of the graph.

Directed graphs:
- In the traversal forest, each tree is a directed tree.
- In each tree, there is a directed path from the root to any other vertex.
Example – a BFS traversal Path

Traversal path: A
Example – a BFS traversal Path

Traversal path: \(AB \)
Example – a BFS traversal Path

Traversal path: ABA
Example – a BFS traversal Path

Traversal path: \textit{ABAC}
Example – a BFS traversal Path

Traversal path: **ABACA**
Example – a BFS traversal Path

Traversal path: \textit{ABACD}
Example – a BFS traversal Path

Traversal path: \textit{ABACDA}
Example – a BFS traversal Path

Traversal path: \(ABACDAB \)
Example – a BFS traversal Path

Traversal path: \textit{ABACDABC}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCB}
Example – a BFS traversal Path

Traversal path: $ABACDABCBE$
Example – a BFS traversal Path

Traversal path: \textit{ABACDABBCBEB}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBA}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBAC}
Example – a BFS traversal Path

Traversal path: $ABACDABCBEBACF$
Example – a BFS traversal Path

Traversal path: \(ABACDABCBEBACFC \)
Example – a BFS traversal Path

Traversal path: $ABACDABCBEBACFCA$
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBACFCAD}
Example – a BFS traversal Path

Traversal path : \textit{ABACDABCBEBACFCADE}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBACFCADED}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBACFCADEDF}
Example – a BFS traversal Path

Traversal path: \(ABACDABCBEBACFCADEDFD\)
Example – a BFS traversal Path

Traversal path: \(ABACDABCBEBACFCADEDFDA\)
Traversals path: **ABACDABCBEBACFCADEDFDAB**
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBACFCADEDFDABE}
Example – a BFS traversal Path

Traversal path: \textit{ABACDABCBEBAFCADEDFDABEF}
Example – the BFS Traversal Tree

ABACADABCBEBACFCADEDFDABEF
Variables for the BFS Procedure

- A level function $Level(v)$:
 - $Level(v) = 0$ if v is a root of a tree in the forest.
 - $Level(v) = \ell$ if v is at distance ℓ from the root.
Variables for the BFS Procedure

- A level function $Level(v)$:
 - $Level(v) = 0$ if v is a root of a tree in the forest.
 - $Level(v) = \ell$ if v is at distance ℓ from the root.

- A FIFO queue Q:
 - $x = First(Q)$: Delete x the first element in Q.
 - $Last(Q) = x$: Add x as the last element in Q.
 - $Create(Q)$: Create an empty queue Q.
 - $Empty(Q)$: Check if the queue Q is empty.
Variables for the BFS Procedure

- **A level function** $Level(v)$:
 - $Level(v) = 0$ if v is a root of a tree in the forest.
 - $Level(v) = \ell$ if v is at distance ℓ from the root.

- **A FIFO queue** Q:
 - $x = First(Q)$: Delete x the first element in Q.
 - $Last(Q) = x$: Add x as the last element in Q.
 - $Create(Q)$: Create an empty queue Q.
 - $Empty(Q)$: Check if the queue Q is empty.

- **A parenthood function** $\Pi(v)$ in the traversal forest:
 - $\Pi(v) = nil$ if v is a root of a tree in the forest.
 - $\Pi(v)$ is v’s parent in the traversal tree that contains v.

Amotz Bar-Noy (CUNY)
The BFS Procedure – Initial Call

\textbf{BFS}(G)

\begin{itemize}
\item \textbf{for each} vertex \(v \in V \) \textbf{do}
 \begin{itemize}
 \item \texttt{Level}(v) = \infty
 \item \texttt{Π}(v) = \textit{Nil}
 \end{itemize}
\end{itemize}

\textbf{for each} vertex \(r \in V \) \textbf{do}

\begin{itemize}
\item \textbf{if} \texttt{Level}(r) = \infty \textbf{then}
 \begin{itemize}
 \item \texttt{BFS-Visit}(r)
 \end{itemize}
\end{itemize}
BFS-Visit(r)

$Level(r) = 0$

Create(Q)

$Last(Q) = r$

while (not Empty(Q)) do

$v = First(Q)$

for each neighbor u of v do

if $Level(u) = \infty$ then

$\Pi(u) = v$

$Level(u) = Level(v) + 1$

$Last(Q) = u$
BFS – Example

Amotz Bar-Noy (CUNY) Graph Traversals Spring 2012 122 / 140
BFS – Correctness

- **Lemma:** BFS *visits* all the vertices.

 Proof: Each vertex changes its level ℓ as follows
 $$\ell = \infty \rightarrow 0 \leq \ell < \infty$$

- **Lemma:** BFS *traverses* all the edges.

 Proof: For each vertex, BFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.

Traversal Path:
- **Undirected graphs:** The traversal path is not explicit. Traversing back the edges is done implicitly due to the queue handling.
- **Directed graphs:** The traversal path sometimes uses the wrong direction due to the queue handling.
BFS – Correctness

Lemma: BFS visits all the vertices.

Proof: Each vertex changes its level l as follows

$$l = \infty \rightarrow 0 \leq l < \infty$$

Lemma: BFS traverses all the edges.

Proof: For each vertex, BFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.

Traversal Path:

- **Undirected graphs:** The traversal path is not explicit. Traversing back the edges is done implicitly due to the queue handling.
- **Directed graphs:** The traversal path sometimes uses the wrong direction due to the queue handling.
BFS – Time Complexity

- **Adjacency lists:** $\Theta(n + m)$.
 - $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.
 - $\Theta(n)$: Each vertex gets a level $\ell < \infty$ exactly once.
Adjacency lists: $\Theta(n + m)$.
- $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.
- $\Theta(n)$: Each vertex gets a level $\ell < \infty$ exactly once.

Adjacency matrix: $\Theta(n^2)$.
- $\Theta(n)$: For each vertex, for examining all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
The BFS Traversal Tree

Lemma: There are no forward edges neither in directed graphs nor in undirected graphs.

Proof: A forward edge would be a tree edge.

Lemma: There are no back edges in undirected graphs.

Proof: A back edge would be a tree edge while examined in the other direction.
The BFS Traversal Tree

Lemma: In undirected graphs, \(\text{Level}(u) = \text{Level}(v) \) or \(\text{Level}(u) = \text{Level}(v) - 1 \) for a **cross** edge \((u, v)\).

Proof:
- \(u \) is added to the queue before \(v \).
- Otherwise BFS would examine \((v, u)\) before \((u, v)\).
- Therefore, \(\text{Level}(u) \leq \text{Level}(v) \).
- \(\text{Level}(u) < \text{Level}(v) - 1 \Rightarrow (u, v) \) would be a **tree** edge.
Problem: Let G be a connected undirected graph and let u and v be 2 vertices. Find one of the shortest paths from u to v and its length.

Algorithm:
Run the BFS algorithm starting with the vertex v.
Terminate when the vertex u is visited the first time.
The length of the shortest path from u to v is the level of vertex u in the BFS traversal tree.
The path $(u, \pi(u), \pi(\pi(u)), \ldots, v)$ is one of the shortest paths from u to v.

Time complexity $O(n+m)$: the same as BFS.
Problem: Let G be a connected undirected graph and let u and v be 2 vertices. Find one of the shortest paths from u to v and its length.

Algorithm:
- **Run** the BFS algorithm starting with the vertex v.
- **Terminate** when the vertex u is visited the first time.
- The length of the shortest path from u to v is the level of vertex u in the BFS traversal tree.
- The path $(u, \Pi(u), \Pi(\Pi(u)), \ldots, v)$ is one of the shortest paths from u to v.

Time complexity $O(n + m)$: the same as BFS.
Problem: Let G be a connected undirected graph and let u and v be 2 vertices. Find one of the shortest paths from u to v and its length.

Algorithm:
- **Run** the BFS algorithm starting with the vertex v.
- **Terminate** when the vertex u is visited the first time.
- The length of the shortest path from u to v is the level of vertex u in the BFS traversal tree.
- The path $(u, \Pi(u), \Pi(\Pi(u)), \ldots, v)$ is one of the shortest paths from u to v.

Time complexity $O(n + m)$: the same as BFS.
Diameter of a Graph

- **Assumption:** Let G be a connected undirected graph.

- **Notation:** For two vertices u and v, denote by $\text{dist}(u, v)$ the length of the shortest path from u to v in G.

- **Definition:** The diameter of G, denoted by $D(G)$, is the longest shortest path in G:

 $$D(G) = \max_{u, v \in G} \{ \text{dist}(u, v) \}.$$

- **Problem:** Find the diameter of G.
Algorithm for any Graph G

Algorithm:

- For all vertices v, run BFS starting with the vertex v.
- Let u be one of the **farthest** vertices from v and let $r(v) = \text{dist}(v, u)$.
- $D(G) = \max_v \{r(v)\}$.

Correctness: By definition of BFS.

Complexity: $O(nm)$ for n times BFS.
Algorithm for any Graph G

Algorithm:

- For all vertices v, run BFS starting with the vertex v.
- Let u be one of the farthest vertices from v and let $r(v) = \text{dist}(v, u)$.
- $D(G) = \max_v \{ r(v) \}$.

Correctness: By definition of BFS.

Complexity: $O(nm)$ for n times BFS.
Problem: Find the diameter of a tree T.

Algorithm:
- Run BFS starting with an arbitrary vertex v.
- Let u be one of the farthest vertices from v.
- Run BFS starting with the vertex u.
- Let w be one of the farthest vertices from u.
- $D(G) = \text{dist}(u, w)$.

Complexity: $O(m)$ for two times BFS.
Problem: Find the diameter of a tree T.

Algorithm:
- Run BFS starting with an arbitrary vertex v.
- Let u be one of the **farthest** vertices from v.
- Run BFS starting with the vertex u.
- Let w be one of the **farthest** vertices from u.
- $D(G) = \text{dist}(u, w)$.
Problem: Find the diameter of a tree T.

Algorithm:
- Run BFS starting with an arbitrary vertex v.
- Let u be one of the **farthest** vertices from v.
- Run BFS starting with the vertex u.
- Let w be one of the **farthest** vertices from u.
- $D(G) = \text{dist}(u, w)$.

Complexity: $O(m)$ for two times BFS.
Correctness

Let x and y be two vertices such that $D(G) = \text{dist}(x, y)$.

If v is either x or y, then $\text{dist}(v, w) = D(G)$ and therefore $\text{dist}(u, w) = D(G)$.

Assume that $\text{dist}(v, y) \geq \text{dist}(v, x)$.

Let z be the vertex that connects v to the path x to y.

z can be v or y.
Correctness

Let x and y be two vertices such that $D(G) = \text{dist}(x, y)$.

If v is either x or y, then $\text{dist}(v, w) = D(G)$ and therefore $\text{dist}(u, w) = D(G)$.

Assume that $\text{dist}(v, y) \geq \text{dist}(v, x)$.

Let z be the vertex that connects v to the path x to y.

z can be v or y.

![Graph Diagram]

(From the given content, it can be inferred that the diagram shows a sequence of vertices connected by edges, with x, z, y, and v labeled.)
Assume that \(z \) is on the path from \(v \) to \(u \).

By definition, \(\text{dist}(v, u) \geq \text{dist}(v, y) \).

Therefore, \(\text{dist}(z, u) \geq \text{dist}(z, y) \).

Therefore, \(D(G) = \text{dist}(x, u) \).

By definition, \(\text{dist}(u, w) \geq \text{dist}(u, x) \).

Therefore, \(D(G) = \text{dist}(u, w) \).
Assume that \(z \) is not on the path from \(v \) to \(u \).

Let \(p \) be the vertex on the path from \(v \) to \(u \) and the path from \(v \) to \(z \) (\(p \) can be \(v \)).

By definition, \(\text{dist}(v, u) \geq \text{dist}(v, y) \).

Therefore, \(\text{dist}(p, u) \geq \text{dist}(p, y) \).
Correctness: Case II

- \(\text{dist}(z, u) > \text{dist}(p, u) \) and \(\text{dist}(z, y) < \text{dist}(p, y) \) by definition.
- Therefore, \(\text{dist}(z, u) > \text{dist}(z, y) \).
- Therefore, \(\text{dist}(x, u) > \text{dist}(x, y) \).
- A contradiction since \(D(G) = \text{dist}(x, y) \).
The Algorithm Fails for Non-Trees

- u is the only farthest vertex from v.
- $v = w$ is the only farthest vertex from u.
- $\text{dist}(x, y) > \text{dist}(u, w)$.
Definition: A directed graph $G = (V, E)$ is strongly connected if for any pair of vertices $u, v \in V$ there exists a directed path from u to v.

Problem: Given a directed graph $G = (V, E)$, determine if G is strongly connected.
Algorithm I

Algorithm:

- For all vertices \(v \in V \), run DFS or BFS starting with the vertex \(v \).
- If there exists a vertex \(u \) that is not reachable from \(v \), then return **NO** else return **YES**.
Algorithm I

- **Algorithm:**
 - For all vertices \(v \in V \), run DFS or BFS starting with the vertex \(v \).
 - If there exists a vertex \(u \) that is not reachable from \(v \), then return **NO** else return **YES**.

- **Correctness:** By definition of DFS and BFS.
Algorithm I

Algorithm:
- For all vertices \(v \in V \), run DFS or BFS starting with the vertex \(v \).
- If there exists a vertex \(u \) that is not reachable from \(v \), then return \(\text{NO} \) else return \(\text{YES} \).

Correctness: By definition of DFS and BFS.

Complexity: \(O(nm) \) for \(n \) times DFS or BFS.
- If \(m < n \), then the underlying undirected graph is not connected, and DFS or BFS would return \(\text{NO} \) after the first run.
- The **worst case** of \(n \) runs of DFS or BFS happens only when \(m > n \). Therefore, the complexity is \(O(nm) \) and not \(O(n(n + m)) \).
Algorithm II

1. For some vertex \(w \), run DFS or BFS on \(G \) starting with \(w \).
2. If there exists \(u \) that is not reachable from \(w \), then return \textbf{NO}.
3. Reverse the direction of all the edges in \(G \) to get a new directed graph \(G' \).
4. Run DFS or BFS on \(G' \) starting with \(w \).
5. If there exists \(v \) that is not reachable from \(w \), then return \textbf{NO}.
6. Else, return \textbf{YES}.
Algorithm II – Correctness

The algorithm returns **NO**:
- The algorithm produces an evidence of two vertices with no directed path between them.
- Either there exists \(u \) s.t. there is no directed path from \(w \) to \(u \) in \(G \).
- Or there exists \(v \) s.t there is no directed path from \(w \) to \(v \) in \(G' \) implying having no directed path from \(v \) to \(w \) in \(G \).

The algorithm returns **YES**:
- Let \(v, u \in V \) be any pair of vertices in \(G \).
- \(YES \) in \(G \) \(\Rightarrow \) there is a directed path from \(w \) to \(u \) in \(G \).
- \(YES \) in \(G' \) \(\Rightarrow \) there is a directed path from \(w \) to \(v \) in \(G' \) implying a directed path from \(v \) to \(w \) in \(G \).

Combining the path from \(v \) to \(w \) with the path from \(w \) to \(u \) generates the path from \(v \) to \(u \).
Algorithm II – Correctness

The algorithm returns **NO:**
- The algorithm produces an evidence of two vertices with no directed path between them.
- Either there exists u s.t. there is no directed path from w to u in G.
- Or there exists v s.t there is no directed path from w to v in G' implying having no directed path from v to w in G.

The algorithm returns **YES:**
- Let $v, u \in V$ be any pair of vertices in G.
- **YES** in G \Rightarrow there is a directed path from w to u in G.
- **YES** in G' \Rightarrow there is a directed path from w to v in G' implying a directed path from v to w in G.
- Combining the path from v to w with the path from w to u generates the path from v to u.
Algorithm II – Complexity

- $O(n + m)$ for running twice DFS or BFS.
- $O(n + m)$ for reversing the direction of all edges to produce the graph G' by scanning all the outgoing list to generate new outgoing lists.
- $O(n + m)$ overall complexity.
Algorithm II – Complexity

- $O(n + m)$ for running twice DFS or BFS.
- $O(n + m)$ for reversing the direction of all edges to produce the graph G' by scanning all the outgoing list to generate new outgoing lists.
- $O(n + m)$ overall complexity.

Better than Algorithm I!