Pointers

Pointers, pointers, pointers!
CIS 15 : Spring 2007

Functionalia

HW 3 is DUE this SUNDAY, | 1:59 pm (Any ?'s)
HW 4 is OUT and PART A is Do April Ist, | 1:59pm
HELP ROOM:

http://bridges.brooklyn.cuny.edu/room.html
TEA: Right after class! 1:30 to 3:30 PM,0317N

Today:
e UNIXWeb-space

e More Pointers

Working in UNIX?

Your UNIX account comes enabled to serve up simple web-pages.
Here is how you get started.
|. Login

2. Create a directory named public_html in your home directory
(only need to do this once!)

$ mkdir public html

3. Move the things you want to see into your public html
$ mv sample.ps ~/public html

4.Set the permissions of the things!

$ cd public html

$ chmod a+r sample.ps

5. Point your web-browser to them... (Replace <login> with your login id)

http://acc6.its.brooklyn.cuny.edu/~<login>/sample.ps

Declaring and Initializing a Pointer Variable

int *ptr; // Need to specify the TYPE of data pointing to
int * ptr; // Same as above

int* ptr; // Same as above

ptr = &x; // Now ptr “points” to the variable x.

ptr still only holds the memory address of x.

Using a Pointer Variable

Access the variable that a pointer points to by using the de-reference
operator ‘*’,

int * ptr;

int x = 25;

ptr = &x; // Now ptr “points” to the variable x.
cout << x << " == Y <K< *ptr << endl;

*ptr = 100; // Change the value of x, NOT ptr!!!

cout << x <K " == Y <K< *ptr << endl;

Using Pointers

You can manipulate a de-referenced pointer in the same way as a
normal variable

int * ptr;
int x =0, y=0, z =0;

cout << x << %, " << y << %, " << z << endl;

ptr = &x;

*ptr += 100; Ouput!?

ptr = &y;

*ptr += 200; And what is ptr pointing to

ptr = &z; at at the END of this code?
*ptr += 300;

cout K x K V", " Ky« ", "<k z <K<K endl;

Using Pointers

You can manipulate a de-referenced pointer in the same way as a
normal variable

int * ptr;
int x =0, y=0, z =0;

cout << x << %, " << y << %, " << z << endl;

ptr = &x;

0,0,0
100, 200, 300

*ptr += 100;
ptr = &y;

*ptr += 200;
ptr = &z; ptr is pointing to the integer z

*ptr += 300;

cout K x K V", " Ky« ", "<k z <K<K endl;

Do not confuse the many uses of ¥

You have seen 3 uses of the asterisk (“*’) so far:

|. Multiplication

distance = speed * time;

2. Declaring a pointer
int * ptr;

3. De-referencing a pointer
*ptr = 100;

Something to think about...

= 100000,
ptr;

ptr &X;

cout << *ptr << endl;

ptr++;

cout << *ptr << endl;

Something to think about...

= 100000;
ptr;

You can manipulate
what Pointers
Point To by
ptr = &x; doing Pointer Arithmetic

cout << *ptr <<

ptr++,; <

cout << *ptr << endl;

Array Names are Constant Pointers

int subway stops([5] = {4, 14, 23, 34, 42};

cout << subway stops[0] << endl;

Same as

cout << *subway stops << endl;

cout << subways stops[2] << endl;

Same as

cout << *(subways stops + 2) << endl;

Array Names are Constant Pointers

int subway stops[5] = {4, 14, 23, 34, 42};

cout << subway stops[4] << endl;

subway stops IS a

. 4 is the offset value
constant pointer /

\

cout << *(subway stops + 4) << endl;

When you add an offset value to a pointer,
you are are adding the offset value
times the size of the data type of that pointer.

Why not *subway stops

int subway stops([5] = {4, 14, 23, 34, 42};

cout << *(subway stops + 4) << endl;

cout << *subway stops + 4 << endl;

Why not *subway stops +4?

int subway stops([5] = {4, 14, 23, 34, 42};

cout << *(subway stops + 4) << endl;

42

cout << *subway stops + 4 << endl;

4+4=8

Pointers can Point to Array Elements

int subway stops([5] = {4, 14, 23, 34, 42};

int * A;train;

A train = subway stops;

cout << *A;train << endl;

cout << * (A train + 4) << endl;

A;train++;

cout << *A;train << endl;

Pointers can Point to Array Elements

int subway stops([5] = {4, 14, 23, 34, 42};
int * A train;

A_train = subway_stops; Points to beginning of array
(no & is needed)

cout << *A train << endl; 4
cout << * (A train + 4) << endl; 42
A train++;

cout << *A_train << endl;

Pointers can Point to Array Elements

int subway stops([5] = {4, 14, 23, 34, 42};

for(int * A train = subway stops; A train; A train++)
{

cout << *A;train << endl;

So, what is this?

Pointers can Point to Array Elements

int subway stops([5] = {4, 14, 23, 34, 42};

for(int * A train = subway stops; A train; A train++)

{

cout << *A;train << endl;

A run-away A Train!

Array names are Pointer Constants

int subway stops([5] = {4, 14, 23, 34, 42};

What Integer
Does A train

A train = subway stops; Point to now!

int * A_train;

What Integer Does
subway stops = A train; < subway stops POint
to how!

Array names are Pointer Constants

int subway stops([5] = {4, 14, 23, 34, 42};

What Integer
Does A train

A train = subway stops; Point to now!
A train+=2;

int * A_train;

What Integer Does
subway stops = A train; < subway stops POint
to how!

ERROR!

Array names are
Constants!

Initialization of Pointers

. int myValue;

e T ptr = nyvalves Guess: Which of these
ways of initializing these
pointers are Legal?

. int manyValues[20];

int * ptr2 = manyValues;

- float anotherValue;

int * ptr3 = anotherValue;

. int quickValue, *ptrd4d = &quickValue;

. float alotOfValues[20], * ptr5 = alotOfValues;

. int * ptré = &myFutureValue;

int myFutureValue;

Initialization of Pointers

int myValue;

int * ptr = &myValue;

int manyValues[20];

int * ptr2 = manyValues;

float anotherValue; Error! Type mismatch!

int * ptr3 = anotherValue;

int quickValue, *ptr4d = &quickValue;

float alotOfValues[20], * ptr5 = alotOfValues;

int * ptr6é = &myFutureValue; Error! Value Nnot
int myFutureValue; initialized yet'

Pointers can be Compared

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;

4_train += 5;

if(4_train > 6_train) Guess: [rue or False?

cout << “True”;
else

cout << “False”;

Pointers can be Compared

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;

4_train += 5;

if(4_train > 6_train)

True, 4 train points to a
sout <= e HIGHER memory address
else
than 6 train

cout << “False”;

Pointers can be Compared

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;

4_train += 5;

if(*4_train > *6_train) @Guess: [rue or False?

cout << “True”;
else

cout << “False”;

Pointers can be Compared

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;

4_train += 5;

if (*4_train > *6_train) False, 4 train value is 86
cout << Trruet 6_train value is 125

else

cout << “False”;

Pointers can be Subtracted

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;
4 train += 5;

6 _train++;

4 train += 3;

6_train++;

int stopsAway = 4 train - 6 train;

Value?

Pointers can be Subtracted

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train all stops, * 6 train = all stops;

4 train += 5;

6 _train++;

4 train += 3;

6_train++; Count the
number of

int stopsAway 4_trfain - 6_tliin; |ntegers

8 integers - 2 integers = 6

What does this mean?

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;
4 train += 5;

6 _train++;

4 train += 3;

6_train++ ;

int meaning = 4 train + 6 train;

What does this mean?

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops, * 6 train = all stops;
4 train += 5;

6 _train++;

4 train += 3;

6_train++;

int meaning = 4 train + 6 train;

Undefined! Error:one does not add pointers.

Resulting address is beyond the bounds of the array.

Find the index

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all stops;

4 train += 5;

cout << 4_train << endl;

86

In the array a11_stops, what is the index of 86!

How can we always find that array index!?

Find the index

int all stops [15] = {125, 116, 110, 103, 96, 86, 77, 68,
59, 51, 42, 33, 28, 23, 14};

int * 4 train = all_stops;

4 train += 5;

cout << 4_train << endl; 8 6

In the array a11_stops, what is the index of 86!

int index = 4 train - all stops;

Pointers as Function Parameters

A pointer can be used as a function parameter.

It §ives the function access to the original argument, much like what a
reference parameter does.

void doubleValue (int *val)

{

int main()
{
int number = 5;

doubleValue (&number) ;

Pointers as Function Parameters

A pointer can be used as a function parameter.

It §ives the function access to the original argument, much like what a
reference parameter does.

void doubleValue (int *val)

{

*is used to pass the

argument by reference

int main()

{ * is used to dereference

the variable

int number = 5;

doubleValue (&number) ;

& is used to pass the memory address
of the variable number to the function

Pointers as Function Parameters

Reference variables hide all of the “mechanics” of dereferencing and
indirection.

void doubleValuePtr (int *val) void doubleValueRef (int &val)

{

int main() int main ()
{ {
int number = 5; int number = 5;

doubleValuePtr (&number) ; doubleValueRef (number) ;

Pointers as Function Parameters

What variables are being passed by reference?

void prompt (int *choice)
{
cout << “What is your choice: %;

cin >> *choice;

int main|()

{

int menuOption;

prompt (&menuOption) ;

Array Names are the Same as Pointers

double classAvg(double * grades, int size)

{

double sum = 0.0;

double * gPtr grades;

for (int count 0; count < size; count++)

{
sum += *gPtr;
gPtr++;

}

return (sum / size);

}
double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;

Equivalent to...

double classAvg(double grades[], int size)

{

double sum = 0.0;

double * gPtr grades;

for (int count 0; count < size; count++)

{
sum += *gPtr;
gPtr++;

}

return (sum / size);

}

double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;

More than one way of stepping through an array

double classAvg(double * grades, int size)

{

double sum = 0.0;

double * gPtr grades;

for (int count 0; count < size; count++)
{

sum += * (gPtr + count);

}

return (sum / size);

double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;

Const variables need Pointers to a Const

const int SIZE = 3;

const double payRates[SIZE] = {12.11, 20.34, 34.32};

displayPayRates (payRates, SIZE) ;

Prototype:

void displayPayRates (const double *rates, int size);

t
Not necessary. Why?

Const variables need Pointers to a Const

const int SIZE = 3;

const double payRates[SIZE] = {12.11, 20.34, 34.32};

displayPayRates (payRates, SIZE)

void displayPayRates (const double *rates, int size);

Write the code to display the Pay Rates in Dollars ($)
Using POINTERS (*) AND NOT ARRAYS ([])

Constant Pointers

A pointer ITSELF can be a constant.

int valueA = 29;
int valueB = 35;

int * const ptr = &valueA;

ptr = &valueB; // error: assignment of read-only variable 'ptr'

*ptr = valueB; // OK!

ptr++; // error: increment of read-only variable 'ptr'

(*ptr) ++; // OK!

What is this?

int value = 29;

const int * const ptr = &value;

cout << *ptr << endl;

ptr++;

(*ptr) ++;

What is this?

int value = 29;

const int * const ptr = &value;

A constant pointer to a constant variable.

(Note that the variable itself can be a non-constant, but the const int protects it)

ptr++; Error!

(*ptr) ++; Error!

Exercises

int array[5] = {1,2,3,4,5};

//A //C

if (array < &array[l]) if (array != &array[2])

cout << "True"; cout << "True";

else else

cout << "False"; cout <<

//B //D

if (&array[4] < &array[1l]) if (array != &array[0])

cout << "True'"; cout << "True";

else else

cout << "False"; cout <<

Exercises

Write a function that takes a pointer to an integer as its input and
converts it to a negative integer (only if it is positive, however)!

Here is the prototype to help you get started:

void makeNegative (int *val) ;

Write some code the demonstrates the use of this function.

