
Pointers
Pointers, pointers, pointers!

CIS 15 : Spring 2007



Functionalia

HW 3 is DUE this SUNDAY, 11:59 pm (Any ?‘s)

HW 4 is OUT and PART A is Do April 1st, 11:59pm

HELP ROOM: 

http://bridges.brooklyn.cuny.edu/room.html

TEA: Right after class!  1:30 to 3:30 PM, 0317N

Today:

• UNIX Web-space

• More Pointers



Working in UNIX?

Your UNIX account comes enabled to serve up simple web-pages.

Here is how you get started.

1. Login

2. Create a directory named public_html in your home directory 
(only need to do this once!)

$ mkdir public_html

3. Move the things you want to see into your public_html

$ mv sample.ps ~/public_html

4. Set the permissions of the things!

$ cd public_html

$ chmod a+r sample.ps

5. Point your web-browser to them... (Replace <login> with your login id)

http://acc6.its.brooklyn.cuny.edu/~<login>/sample.ps



Declaring and Initializing a Pointer Variable

int *ptr; // Need to specify the TYPE of data pointing to

...

int * ptr; // Same as above

...

int* ptr; // Same as above

int x = 25;

ptr = &x; // Now ptr “points” to the variable x.

ptr still only holds the memory address of x.



Using a Pointer Variable

Access the variable that a pointer points to by using the de-reference 
operator ‘*’.
int * ptr; 

int x = 25;

ptr = &x; // Now ptr “points” to the variable x.

cout << x << “ == “ << *ptr << endl;

*ptr = 100; // Change the value of x, NOT ptr!!!

cout << x << “ == “ << *ptr << endl;



Using Pointers
You can manipulate a de-referenced pointer in the same way as a 
normal variable

int * ptr; 

int x = 0, y = 0, z = 0;

cout << x << “, “ << y << “, “ << z << endl;

ptr = &x; 

*ptr += 100;

ptr = &y; 

*ptr += 200;

ptr = &z; 

*ptr += 300;

cout << x << “, “ << y << “, “ << z << endl;

Ouput? 

And what is ptr pointing to 
at at the END of this code?



Using Pointers
You can manipulate a de-referenced pointer in the same way as a 
normal variable

int * ptr; 

int x = 0, y = 0, z = 0;

cout << x << “, “ << y << “, “ << z << endl;

ptr = &x; 

*ptr += 100;

ptr = &y; 

*ptr += 200;

ptr = &z; 

*ptr += 300;

cout << x << “, “ << y << “, “ << z << endl;

0, 0, 0
100, 200, 300

ptr is pointing to the integer z



Do not confuse the many uses of ‘*’

You have seen 3 uses of the asterisk (‘*’) so far:

1. Multiplication
distance = speed * time;

2. Declaring a pointer
int * ptr;

3. De-referencing a pointer
*ptr = 100;



Something to think about...

int x = 100000;

int * ptr;

ptr = &x;

cout << *ptr << endl;

ptr++;

cout << *ptr << endl;



Something to think about...

int x = 100000;

int * ptr;

ptr = &x;

cout << *ptr << endl;

ptr++;

cout << *ptr << endl;

You can manipulate 
what Pointers 

Point To by
doing Pointer Arithmetic



Array Names are Constant Pointers
int subway_stops[5] = {4, 14, 23, 34, 42};

cout << subway_stops[0] << endl;

cout << *subway_stops << endl;

cout << subways_stops[2] << endl;

cout << *(subways_stops + 2) << endl;

same as

same as



Array Names are Constant Pointers
int subway_stops[5] = {4, 14, 23, 34, 42};

cout << subway_stops[4] << endl;

cout << *(subway_stops + 4) << endl;

subway_stops is a 
constant pointer 

4 is the offset value

When you add an offset value to a pointer,
you are are adding the offset value 
times the size of the data type of that pointer.



int subway_stops[5] = {4, 14, 23, 34, 42};

cout << *(subway_stops + 4) << endl;

cout << *subway_stops + 4 << endl;

Why not *subway_stops + 4 ?



int subway_stops[5] = {4, 14, 23, 34, 42};

cout << *(subway_stops + 4) << endl;

cout << *subway_stops + 4 << endl;

42

4 + 4 = 8

Why not *subway_stops + 4 ?



Pointers can Point to Array Elements

int subway_stops[5] = {4, 14, 23, 34, 42};

int * A_train;

A_train = subway_stops;

cout << *A_train << endl;

cout << *(A_train + 4) << endl;

A_train++;

cout << *A_train << endl;



Pointers can Point to Array Elements

int subway_stops[5] = {4, 14, 23, 34, 42};

int * A_train;

A_train = subway_stops;

cout << *A_train << endl;

cout << *(A_train + 4) << endl;

A_train++;

cout << *A_train << endl;

Points to beginning of array 
(no & is needed)

4

42

14



Pointers can Point to Array Elements

int subway_stops[5] = {4, 14, 23, 34, 42};

for(int * A_train = subway_stops; A_train; A_train++)

{

cout << *A_train << endl;

}

So, what is this?



Pointers can Point to Array Elements

int subway_stops[5] = {4, 14, 23, 34, 42};

for(int * A_train = subway_stops; A_train; A_train++)

{

cout << *A_train << endl;

}

A run-away A Train!



Array names are Pointer Constants

int subway_stops[5] = {4, 14, 23, 34, 42};

int * A_train;

A_train = subway_stops;

A_train+=2;

subway_stops = A_train; 

What Integer 
Does A_train 
Point to now?

What Integer Does 
subway_stops Point 

to now?



Array names are Pointer Constants

int subway_stops[5] = {4, 14, 23, 34, 42};

int * A_train;

A_train = subway_stops;

A_train+=2;

subway_stops = A_train; 

What Integer 
Does A_train 
Point to now?

What Integer Does 
subway_stops Point 

to now?

23

ERROR!
Array names are 

Constants!



Initialization of Pointers
int myValue;

int * ptr = &myValue;

int manyValues[20];

int * ptr2 = manyValues;

float anotherValue;

int * ptr3 = anotherValue;

int quickValue, *ptr4 = &quickValue;

float alotOfValues[20], * ptr5 = alotOfValues;

int * ptr6 = &myFutureValue;

int myFutureValue;

Guess: Which of these 
ways of initializing these 

pointers are Legal?

1.

2.

3.

4.

5.

6.



Initialization of Pointers
int myValue;

int * ptr = &myValue;

int manyValues[20];

int * ptr2 = manyValues;

float anotherValue;

int * ptr3 = anotherValue;

int quickValue, *ptr4 = &quickValue;

float alotOfValues[20], * ptr5 = alotOfValues;

int * ptr6 = &myFutureValue;

int myFutureValue;

Error!  Type mismatch!

1.

2.

3.

4.

5.

6. Error! Value not 
initialized yet!



Pointers can be Compared

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

if(4_train > 6_train)

cout << “True”;

else

cout << “False”;

Guess: True or False?



Pointers can be Compared

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

if(4_train > 6_train)

cout << “True”;

else

cout << “False”;

True,  4_train points to a 
HIGHER memory address 

than 6_train



Pointers can be Compared

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

if(*4_train > *6_train)

cout << “True”;

else

cout << “False”;

Guess: True or False?



Pointers can be Compared

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

if(*4_train > *6_train)

cout << “True”;

else

cout << “False”;

False,  4_train value is 86 
6_train value is 125



Pointers can be Subtracted

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

6_train++;

4_train += 3;

6_train++;

int stopsAway = 4_train - 6_train;

Value?



Pointers can be Subtracted

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

6_train++;

4_train += 3;

6_train++;

int stopsAway = 4_train - 6_train;

8 integers - 2 integers = 6

Count the 
number of 
Integers



What does this mean?

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

6_train++;

4_train += 3;

6_train++;

int meaning = 4_train + 6_train;



What does this mean?

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops, * 6_train = all_stops;

4_train += 5;

6_train++;

4_train += 3;

6_train++;

int meaning = 4_train + 6_train;

Undefined!  Error: one does not add pointers.

Resulting address is beyond the bounds of the array.



Find the index
int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops;

4_train += 5;

cout << 4_train << endl; 

In the array all_stops, what is the index of 86?

How can we always find that array index?

86



Find the index

int all_stops [15] = {125, 116, 110, 103, 96, 86, 77, 68, 

    59, 51, 42, 33, 28, 23, 14};

int * 4_train = all_stops;

4_train += 5;

cout << 4_train << endl; 

In the array all_stops, what is the index of 86?

int index = 4_train - all_stops;

86



Pointers as Function Parameters

A pointer can be used as a function parameter.

It gives the function access to the original argument, much like what a 
reference parameter does.
void doubleValue(int *val)

{

*val *= 2;

}

int main()

{

int number = 5;

doubleValue(&number);

}



Pointers as Function Parameters

A pointer can be used as a function parameter.

It gives the function access to the original argument, much like what a 
reference parameter does.
void doubleValue(int *val)

{

*val *= 2;

}

int main()

{

int number = 5;

doubleValue(&number);

}

* is used to pass the 
argument by reference

* is used to dereference 
the variable 

& is used to pass the memory address 
of the variable number to the function



Pointers as Function Parameters

Reference variables hide all of the “mechanics” of dereferencing and 
indirection.
void doubleValuePtr(int *val)

{

*val *= 2;

}

int main()

{

int number = 5;

doubleValuePtr(&number);

}

void doubleValueRef(int &val)

{

val *= 2;

}

int main()

{

int number = 5;

doubleValueRef(number);

}

EQ
U
IV
AL
EN

T



Pointers as Function Parameters

What variables are being passed by reference?

void prompt(int *choice)

{

cout << “What is your choice: “;

cin >> *choice;

}

int main()

{

int menuOption;

prompt(&menuOption);

}



Array Names are the Same as Pointers
double classAvg(double * grades, int size)

{

double sum = 0.0;

double * gPtr = grades;

for(int count = 0; count < size; count++)

{

sum += *gPtr;

gPtr++;

}

return (sum / size);

}

double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;



Equivalent to...
double classAvg(double grades[], int size)

{

double sum = 0.0;

double * gPtr = grades;

for(int count = 0; count < size; count++)

{

sum += *gPtr;

gPtr++;

}

return (sum / size);

}

double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;



More than one way of stepping through an array

double classAvg(double * grades, int size)

{

double sum = 0.0;

double * gPtr = grades;

for(int count = 0; count < size; count++)

{

sum += *(gPtr + count);

}

return (sum / size);

}

double grades[5] = {66.6, 50.5, 76.5, 34.4, 98.1};

cout << “Class average is: “ << classAvg(grades, 5) << endl;



Const variables need Pointers to a Const

const int SIZE = 3;

const double payRates[SIZE] = {12.11, 20.34, 34.32};

displayPayRates(payRates, SIZE);

Prototype:
void displayPayRates(const double *rates, int size);

Not necessary.  Why?



Const variables need Pointers to a Const

const int SIZE = 3;

const double payRates[SIZE] = {12.11, 20.34, 34.32};

displayPayRates(payRates, SIZE);

void displayPayRates(const double *rates, int size);

Write the code to display the Pay Rates in Dollars ($)
Using POINTERS (*) AND NOT ARRAYS ([])



Constant Pointers

A pointer ITSELF can be a constant.

int valueA = 29;

int valueB = 35;

int * const ptr = &valueA;

ptr = &valueB;   // error: assignment of read-only variable 'ptr'

*ptr = valueB;   // OK!

ptr++;           // error: increment of read-only variable 'ptr'

(*ptr)++;          // OK!     



What is this?

int value = 29;

const int * const ptr = &value;

cout << *ptr << endl;

ptr++;

(*ptr)++;



What is this?

int value = 29;

const int * const ptr = &value;

A constant pointer to a constant variable.  

(Note that the variable itself can be a non-constant, but the const int protects it) 

ptr++;

(*ptr)++;

Error!

Error!



Exercises
 int array[5] = {1,2,3,4,5};

 //A

 if(array < &array[1]) 

  cout << "True";

 else

  cout << "False";

 //B

 if(&array[4] < &array[1])

  cout << "True";

 else

  cout << "False";

 //C

 if(array != &array[2])

  cout << "True";

 else

  cout << "False";

 //D 

 if(array != &array[0])

  cout << "True";

 else

  cout << "False";



Exercises

Write a function that takes a pointer to an integer as its input and 
converts it to a negative integer (only if it is positive, however)!

Here is the prototype to help you get started:

void makeNegative(int *val);

Write some code the demonstrates the use of this function.


