
Structured Data

CIS 15 : Spring 2007

Functionalia

HW4 Part A due this SUNDAY April 1st: 11:59pm

Reminder: I do NOT accept LATE HOMEWORK.

Today:

• Dynamic Memory Allocation

• Allocating Arrays

• Returning Pointers from Functions

• Structured Data

Variables can be created and destroyed

While a program is running, variables (and arrays of variables) can be
created on the fly through dynamic memory allocation.

The program asks the computer for an unused chunk of memory
with the size of the variable requested.

The computer returns the starting address of the chunk of memory.
This starting address is stored in a pointer.

Use the new operator along with the type of the variable you want.

int * ptr;

ptr = new int;
*ptr = 25;

cout << *ptr;

cin >> *ptr;

(*ptr)++;

Dynamically Allocating Arrays

Dynamically Allocating Arrays is the more common
use of the new operator:

int * ptr;

ptr = new int[100]; // creates a 100 integer sized array

Use ptr the same way one would use an integer
array name.

for(int i = 0; i < 100; i++)

ptr[i] = 1;

Dynamically Allocating Arrays

Not limited to only using integers.

char * cPtr;

cPtr = new char[27]; // creates a 27 character sized array

What is stored in the cPtr array?

for(int i = 0; i < 26; i++)

cPtr[i] = ‘a’ + i;

cPtr[26] = ‘\0’;

Dynamically Allocating Arrays

Not limited to only using integers.

char * cPtr;

cPtr = new char[27]; // creates a 27 character sized array

What is stored in the cPtr array?

for(int i = 0; i < 26; i++)

cPtr[i] = ‘a’ + i;

cPtr[26] = ‘\0’;

abcdefghijklmnopqrstuvwxyz

NULL byte at the end

Memory is finite

int * wholeLottaMemory = new int[1000000000000000000000000];

What happens when the computer runs out of memory?

1. Throws an Exception (Error Handling in C++)

2. Returns memory address 0 (also known as NULL)

int * ptr = new int[100];

if(ptr == NULL)

{

cout << “Error allocating memory\n”;

return;

}

What is created must be deleted!

When your program is finished using dynamically
allocated memory, it must free the memory for
future use.

int * ptr;

ptr = new int;

*ptr = 5;

*ptr = *ptr + 2;

....

delete ptr;

Free the memory by using
the delete operator

Pointers are able to be resued

delete does not remove the pointer. It only
FREES the memory that it points to.

int * ptr;

ptr = new int;

*ptr = 5;

*ptr = *ptr + 2;

delete ptr;

ptr = new int;

*ptr = 3;

delete ptr;

Always free the
memory that you

dynamically allocate.

C++ does not do
garbage collection

Deleting Arrays

To delete dynamically allocated arrays, need to add the
[] symbol.

char * cPtr;

cPtr = new char[27]; // creates a 27 character sized array

...

delete [] cPtr;

Not deleting dynamically allocated memory creates memory leaks.
(And results in sluggish and failing programs).

Always check for NULL

NULL points to memory address 0.

Not a usable address. Operating system data is stored in the lower
memory address space.

Always check if a pointer is pointing to NULL.

When a pointer is not being used any more. Set it to NULL.

char * cPtr;

cPtr = new char[27]; // creates a 27 character sized array

...

delete [] cPtr;

cPtr = NULL;

What’s wrong?

Note: Functions can return pointers (Take a look at all C String Functions).

char * getName()

{

char name[81];

cout << “Enter your name: “;

cin.getline(name, 81);

return name;

}

What’s wrong?

Note: Functions can return pointers (Take a look at all C String Functions).

char * getName()

{

char name[81];

cout << “Enter your name: “;

cin.getline(name, 81);

return name;

}

name is a local variable
to the function.

Exists only within the
scope of the function.

Dynamically Allocate the Memory

Functions themselves can dynamically allocate memory, return a
pointer to the memory, and the memory sticks around beyond
the scope of the function.

char * getName()
{

char * name;
name = new char[81];
cout << “Enter your name: “;
cin.getline(name, 81);
return name;

}

char * yourName = getName();

cout << yourName << endl;

delete [] yourName;

Dynamically Allocate the Memory

This is how MEMORY LEAKS can happen. When you lose track
of memory and forget to free it.

char * getName()
{

char * name;
name = new char[81];
cout << “Enter your name: “;
cin.getline(name, 81);
return name;

}

char * yourName = getName();

cout << yourName << endl;

delete [] yourName;

Exercises

1. Assume that ip is a pointer to an int. Write a
statement that will dynamically allocate an integer
variable and store its address in ip. Write a
statement that will free the memory allocated to ip.

2. Assume ip is a pointer to an int. Then, write a
statement that will dynamically allocate an array of
500 integers and store its address in ip. Write a
statement that will free the memory allocated in the
statement you just wrote.

Exercises

1. Assume that ip is a pointer to an int. Write a statement that will dynamically
allocate an integer variable and store its address in ip. Write a statement that will
free the memory allocated to ip.

int * ip;

ip = new int;

*ip = 255;

delete ip;

2. Assume ip is a pointer to an int. Then, write a statement that will dynamically
allocate an array of 500 integers and store its address in ip. Write a statement that
will free the memory allocated in the statement you just wrote.

Exercises

1. Assume that ip is a pointer to an int. Write a statement that will dynamically
allocate an integer variable and store its address in ip. Write a statement that will
free the memory allocated to ip.

2. Assume ip is a pointer to an int. Then, write a statement that will dynamically
allocate an array of 500 integers and store its address in ip. Write a statement that
will free the memory allocated in the statement you just wrote.

int * ip;

ip = new int[500];

for(int i = 0; i < 500; i++)

*(ip + i) = 255;

delete [] ip;

Primitive Data Types

So far (with the exception of learning a little bit of
Classes in 1.5), the data types you’re accustomed
to are:

bool int unsigned long int

char long int float

unsigned char unsigned short int double

short int unsigned int long double

Structured Data

To provide a level of Abstraction, C++ allows you
to group several variables together into a single
item known as structure.

What is Abstraction?

A struct is similar to a class, but more simple, in
that it abstracts only data, and not functions.

An array allows one to package variables and data
together, but what is it’s limitation?

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Keyword struct to indicate
that what follows is a struct.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

The tag (i.e. name of the
new structured data-type

you are defining).

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

It is customary to always
Capitalize the first letter of

the name of a structure.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

The member data types are
contained in curly braces

(just like functions)

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

NOTE! There is a semi-
colon at the end of the
struct (unlike functions)

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Variables are declared like
in any function.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Your structure can be
declared now as any

other variable.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Time later;

This is the definition.
(Only one).

This is the instantiation.
(Can be many).

Definition of structs

Typically struct’s are defined outside of any functions, and at
the top of the program (i.e. near the prototypes). Why?

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

}

Definition of structs

Note the mixture of data-types, and using one line for the
integers.

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

}

Accessing the members of a struct
You can access the members of a struct variable through
dot-notation.

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

current.day = 26;

current.month = 3;

current.year = 2007;

strcpy(current.longName, “Bangladesh - Independence Day”);

}

Accessing the members of a struct

Why won’t this work?

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

cout << “Enter the current date: “;

cin >> current;

cout << current << endl;

}

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Asheville”, “NC”, 50000, 28};

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Asheville”, “NC”, 50000, 28};

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Tampa”};

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Atlanta”, “GA”};

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Knoxville”, “TN”, , 90};

Initializing Data in Structs

struct CityInfo

{

char cityName[30];

char state[3];

long population;

int distance;

};

CityInfo location = {“Knoxville”, “TN”, , 90};

Illegal!!!

Arrays of Structs

struct BookInfo

{

char title[50];

char author[30];

char publisher[25];

double price;

};

BookInfo bookList[20]; // creates 20 BookInfo’s

cout << bookList[10].title << endl;

cout << bookList[10].title[0] << endl;

What’s the difference?

Structs can be nested
struct Rectangle

{

int length;

int width;

};

struct House

{

int height;

Rectangle footprint;

};

House mine;

mine.footprint.length = 20;

mine.footprint.width = 40;

Must Appear Before

