
Structured Data
Linked Lists

CIS 15 : Spring 2007

Functionalia

HW4 Part B due this SUNDAY April 15st: 11:59pm

Today:

• Structured Data

• Dynamic Structures

• Linked Lists

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Keyword struct to indicate
that what follows is a struct.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

The tag (i.e. name of the
new structured data-type

you are defining).

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

It is customary to always
Capitalize the first letter of

the name of a structure.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

The member data types are
contained in curly braces

(just like functions)

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

NOTE! There is a semi-
colon at the end of the
struct (unlike functions)

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Variables are declared like
in any function.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Your structure can be
declared now as any

other variable.

Anatomy of a struct

Here is a structure (called Time) that contains 3 integers
(hour, minutes, and seconds).

struct Time

{

int hour;

int minutes;

int seconds;

};

Time now;

Time later;

This is the definition.
(Only one).

This is the instantiation.
(Can be many).

Definition of structs

Typically struct’s are defined outside of any functions, and at
the top of the program (i.e. near the prototypes). Why?

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

}

Definition of structs

Note the mixture of data-types, and using one line for the
integers.

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

}

Accessing the members of a struct
You can access the members of a struct variable through
dot-notation.

struct Date

{

int day, month, year;

char longName[255];

};

int main() {

Date current;

current.day = 26;

current.month = 3;

current.year = 2007;

strcpy(current.longName, “Bangladesh - Independence Day”);

}

Arrays of Structs

struct BookInfo

{

char title[50];

char author[30];

char publisher[25];

double price;

};

BookInfo bookList[20]; // creates 20 BookInfo’s

cout << bookList[10].title << endl;

cout << bookList[10].title[0] << endl;

What’s the difference?

Structs used in Functions

House h is a copy
void showHouse(House h)

{

cout << h.footprint.length << “ by “

<< h.footprint.width << “ feet and, “

<< h.footprint.height << “high” << endl;

}

House h is a reference to the original
void showHouse(House &h)

{

cout << h.footprint.length << “ by “

<< h.footprint.width << “ feet and, “

<< h.footprint.height << “high” << endl;

}

Structs used in Functions

a copy of the whole House is returned
House buildHouse(int length, int width, int height)

{

House h;

h.footprint.length = length;

h.footprint.width = width;

h.height = height;

return h;

}

Allows you to return more than one value from your
function!

Pointers to structs

struct Rectangle

{

int length;

int height;

};

Rectangle * rPtr;

Rectangle rect = {20, 40};

rPtr = ▭

Using rPtr how does one access the
length and the width of the Rectangle?

Pointers to structs

struct Rectangle

{

int length;

int height;

};

Rectangle * rPtr;

Rectangle rect = {20, 40);

rPtr = ▭

cout << *rPtr.length << endl; DOES NOT WORK!

Dot Notation has higher
precedence than the

indirection operator (*)!

Pointers to structs

struct Rectangle

{

int length;

int height;

};

Rectangle * rPtr;

Rectangle rect = {20, 40);

rPtr = ▭

cout << (*rPtr).length << endl;

WORKS... but it is unwieldy!

Pointers to structs

struct Rectangle

{

int length;

int height;

};

Rectangle * rPtr;

Rectangle rect = {20, 40);

rPtr = ▭

cout << rPtr->length << endl;

-> is the Structure
Pointer Operator

Structures can be Dynamically Allocated
Rectangle * rect;

rect = new Rectangle;

rect->length = 20;

rect->height = 30;

Rectangle * manyRects;

manyRects = new Rectangle[5];

for(int i = 0; i < 5; i++)

{

manyRects[i].length = 0;

manyRects[i].height = 0;

}

Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers n1;

n1.dos = new char;

n1.tres = new double;

n1.uno = 1;

Access dos and tres?

Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers n1;

n1.dos = new char;

n1.tres = new double;

n1.uno = 1;

*n1.dos = ‘2’;

*(n1.tres) = 3.33;

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

n1->uno = 1;

*n1->dos = ‘2’;

*(*n1).tres = 3.33; // same thing

Access uno, dos, and tres?

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

(*nPtr).uno = 1;

*n1->dos = ‘2’;

*(*n1).tres = 3.33;

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

nPtr->uno = 1;

*n1->dos = ‘2’;

*(*n1).tres = 3.33;

Same thing

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

nPtr->uno = 1;

*nPtr->dos = ‘2’;

*(*n1).tres = 3.33;

Pointer to Struct is dereferenced,
along with pointer (dos) to the char.

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

nPtr->uno = 1;

*nPtr->dos = ‘2’;

*(*nPtr).tres = 3.33;

Same thing (different way of writing it).

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

nPtr->uno = 1;

*nPtr->dos = ‘2’;

*nPtr->tres = 3.33;

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

How does one go about
deleting all of this memory?

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

delete nPtr; ?

Dynamically Created Structs can Contain Dynamically Allocated Memory

struct Numbers

{

int uno;

char * dos;

double * tres;

};

Numbers * nPtr = new Numbers;

nPtr->dos = new char;

nPtr->tres = new double;

delete nPtr->dos;

delete nPtr->tres;

delete nPtr;

nPtr = NULL;

Need to delete everything
that was allocated !

(in the correct order)

Set the unused Pointer to NULL!

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

node a
id = 1

next =
NULL

node b
id = 2

next =
NULL

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

node a
id = 1

next

node b
id = 2

next

NULL

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

node a
id = 1

next

node b
id = 2

next

?

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

node a
id = 1

next

node b
id = 2

next

NULL

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

node a
id = 1

next

node b
id = 2

next

NULL

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

node a
id = 1

next

node b
id = 2

next

NULL

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

cout << a.id << “ “ << a.next->id;

node a
id = 1

next

node b
id = 2

next

NULL

What gets printed out?

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

cout << a.id << “ “ << a.next->id;

node a
id = 1

next

node b
id = 2

next

NULL

1 2

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

cout << a.next->next->id;

node a
id = 1

next

node b
id = 2

next

NULL

What about now?

Dynamically Linked Structs

From the Homework:

struct node {

int id;

node * next;

};

node a = {1, NULL};

node b = {2, NULL};

a.next = &b;

b.next = &a;

cout << a.next->next->id;

node a
id = 1

next

node b
id = 2

next

NULL

Back to 1

Dynamically Allocate the nodes
struct node {

int id;

node * next;

};

node * a;

a = new node;

a->id = 1;

a->next = new node;

a->next->id = 2;

What does this look like?

Dynamically Allocate the nodes
struct node {

int id;

node * next;

};

node * a;

a = new node;

a->id = 1;

a->next = new node;

a->next->id = 2;

NULL

id = 1

next

id = 2

next

a

?

Dynamically Allocate the nodes
struct node {

int id;

node * next;

};

node * a;

a = new node;

a->id = 1;

a->next = new node;

a->next->id = 2;

a->next->next = NULL;

NULL

id = 1

next

id = 2

next

a

Linked List

Dynamically Linked Structs (and in C++ Objects & Classes) is the
basis for more Advanced Data Structures (i.e. Linked Lists)

A series of dynamically linked structs (i.e. nodes) is
called a Linked List.

1

next

2

next

3

next

4

next NULL

Start

Linked List
Linked Lists can be more dynamic than arrays.

Consider Adding a node to the middle of the list.

1

next

2

next

4

next

5

next NULL

Start

1

next

2

next

4

next

5

next NULL

Start 3

next

Linked List

Adding an element to an array requires moving all of
the other elements to make space for the new
element.

1 2 4 5

1 2 4 5

1 2 4 5

1 2 3 4 5

Linked List
Nodes in a Linked List can point to other dynamically
allocated data.

1
next
data

2
next
data

3
next
data

4
next
data

NULL

Start

Linked List

Having a single link (the node * next pointer) allows for
forward traversing of the list.

1
next
data

2
next
data

3
next
data

4
next
data

NULL

Start

Forward

How might one go backwards?

Linked List

Add another link (a node *) to every node. A doubly-
linked list.

1
next
prev

2
next
prev

3
next
prev

4
next
prev

NULL

Start

Forward and Backward

NULL

Extra links allow for extra ways of ordering the list.

Linked List

Sometimes an extra Pointer is used to keep track of
the End of the list. (Helps in list maintenance)

1
next
prev

2
next
prev

3
next
prev

4
next
prev

NULL

Start

Forward and Backward

NULL

Extra links allow for extra ways of ordering the list.

End

So how does one build a Linked List.

struct node {

 int id;

 node * next;

};

node * start = NULL;

node * end = NULL;

Start End

NULL

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

end->next = n; // (1)

end = n; // (2)

end->next = NULL; // (3)

}

Start End

NULL

Adding a Node to the End of the List

Start End

1

next

End

4

next

Start

1

next

2

next

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

end->next = n; // (1)

end = n; // (2)

end->next = NULL; // (3)

}

Start End

NULL

Adding a Node to the End of the List

Start End

1

next

End

4

next
(1)

Start

1

next

2

next

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

end->next = n; // (1)

end = n; // (2)

end->next = NULL; // (3)

}

Start End

NULL

Adding a Node to the End of the List

Start End

1

next

End

4

next
(1)

(2)Start

1

next

2

next

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

end->next = n; // (1)

end = n; //(2)

end->next = NULL; //(3)

}

Start End

NULL

Adding a Node to the End of the List

Start End

1

next

Start
End

1

next

2

next

3

next
(1)

(2)

(3)
NULL

// Create a New Node

node * n = new node;

n->id = id; // some id

Start End

NULL

Adding a Node to the Beginning of the List

Start End

2

next

4

next

3

next

1

next NULL

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

n->next = start; // (1)

start = n; // (2)

}

Start End

NULL

Adding a Node to the Beginning of the List

Start End

1

next

Start End

2

next

4

next

3

next

1

next NULL

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

n->next = start; // (1)

start = n; // (2)

}

Start End

NULL

Adding a Node to the Beginning of the List

Start End

1

next

(1)

Start End

2

next

4

next

3

next

1

next NULL

// Create a New Node

node * n = new node;

n->id = id; // some id

// 1. First, the Empty List

if((start == NULL) && (end == NULL)) {

start = n;

end = n;

} else { // 2. Second, already have a built list

n->next = start; // (1)

start = n; // (2)

}

Start End

NULL

Adding a Node to the Beginning of the List

Start End

1

next

(1)

(2)
End

2

next

4

next

3

next

1

next NULL

Start

// Create a New Node

node * n = new node;

n->id = id; // some id

node * here; // assume that we want to insert after this pointer

Adding a Node to the Middle of

(an already built) List

End

2

next

5

next

4

next

3

next

NULL

Start

1

next

Here

