
Intro. Classes
Beginning Objected Oriented Programming

CIS 15 : Spring 2007

Functionalia

HW 5 Out.

Due After Midterm 2.

Today:

• More Classes

• HW 5 Concepts

Introduction to Classes and OOP

Classes are the basis for Object Oriented Programming in C++.
So far, we’ve been doing Procedural Programming in C++.

Object Oriented Programming provides better organizational
structures for your code -

classes = data + functionality.

Tenants of Object Oriented Programming
1. Encapsulation
2. Data Hiding
3. Polymorphism
4. Inheritance

Definition of a Class

class Rectangle

{

double width;

double height;

};

A class is defined in a similar manner as a struct is.

Keyword class to indicate
that what follows is a Class.

Definition of a Class

class Rectangle

{

double width;

double height;

};

A class is defined in a similar manner as a struct is.

The Name (Tag) of the class
follows. This becomes the “type”
that you declare instances of the

class Rectangle with.

Definition of a Class

class Rectangle

{

double width;

double height;

};

A class is defined in a similar manner as a struct is.

Again, customary to capitalize
the first letter of the name of

the class.

Definition of a Class

class Rectangle

{

double width;

double height;

};

A class is defined in a similar manner as a struct is.

Don’t forget the semi-colon!

Definition of a Class

class Rectangle

{

double width;

double height;

};

A class is defined in a similar manner as a struct is.

Declarations of your data
(and functions - as you will

shortly see), contained within
the curly-braces.

NOTE: Unlike structs - by default the data and the
functions of a class are Private.

Definition of a Class

class Rectangle

{

double width;

double height;

};

Rectange r1;

r1.width = 5.555;

A class is defined in a similar manner as a struct is.

Declarations of your data
(and functions - as you will

shortly see), contained within
the curly-braces.

NOTE: Unlike structs - by default the data and the
functions of a class are Private.

COMPILE ERROR!

Access Specifiers

class Rectangle

{

private:

double width;

double height;

public:

double getArea();

};

Use public: and private: labels to specify the access to the
different data and functions.

Even through it is by default private - it is a good idea
to explicitly label the private components of the class.

Access Specifiers

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea();

};

Set up public member accessor functions to control access to the
private members of the class.

The interface to
manipulating the object.

Access Specifiers

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea();

};

Set up public member accessor functions to control access to the
private members of the class.

Called accessor, or getter functions.

Called mutators, or setter functions.

Read-Only Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

The keyword const can be used to specify that the function will
not change any of the data stored in the class.

This is helpful to guarantee that there is no future code
inadvertently overwrites something.

Defining Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

void Rectangle::setWidth(double w) {
width = w;

}

void Rectangle::setHeight(double h) {
height = h;

}

Once declared in the class, member functions are defined outside
of the class definition. Note the use of the ‘::’ scope operator.

scope operator
(used with the class name)

Defining Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

void Rectangle::setWidth(double w) {
width = w;

}

void Rectangle::setHeight(double h) {
height = h;

}

Once declared in the class, member functions are defined outside
of the class definition. Note the use of the ‘::’ scope operator.

Private member variables
are accessible from the

function definition.

Defining Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

double Rectangle::getArea() const {
return (width * height);

}

Once declared in the class, member functions are defined outside
of the class definition. Note the use of the ‘::’ scope operator.

Use of the const
operator in the function

definition to specify a
“constant” object and

read-only access to the
class data.

Defining Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

double Rectangle::getArea() const {
return (width * height);

}

Once declared in the class, member functions are defined outside
of the class definition. Note the use of the ‘::’ scope operator.

Avoids stale data, defining
Area as a resulting

operation on the two
member variables width
and height - as opposed

to having declared an
area member variable.

Defining Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

double Rectangle::getArea() const {
return (width * height);

}

Once declared in the class, member functions are defined outside
of the class definition. Note the use of the ‘::’ scope operator.

Notice that the return type
comes on the far right-side of
the Rectangle::getArea()

declaration.

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r1;
r1.setWidth(1.0);
r1.setHeight(4.0);
cout << r1.getArea() << endl;

Using the class-name to declare a variable of the class type is called
instantiating the class. The variable is called an object.

Definition outside of
main() and other functions.

Use of the Class occurs in
main() or other functions.

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r1;
r1.setWidth(1.0);
r1.setHeight(4.0);
cout << r1.getArea() << endl;

Using the class-name to declare a variable of the class type is called
instantiating the class. The variable is called an object.

Object r1 is an instance of
the Rectangle class.

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r1;
r1.setWidth(1.0);
r1.setHeight(4.0);
cout << r1.getArea() << endl;

Using the class-name to declare a variable of the class type is called
instantiating the class. The variable is called an object.

Access the member functions
(methods) via dot-

notation.

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r1;
r1.setWidth(1.0);
r1.setHeight(4.0);
cout << r1.getArea() << endl;

Using the class-name to declare a variable of the class type is called
instantiating the class. The variable is called an object.

Expected output?

Access the member functions
(methods) via dot-

notation.

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r1;
r1.setWidth(1.0);
r1.setHeight(4.0);
cout << r1.getArea() << endl; 4.0

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r2;
cout << r2.getArea() << endl; Expected output?

Instantiation of the Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r2;
cout << r2.getArea() << endl;

r2.width = ?
r2.height = ?

Pointer to a Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r3;
Rectangle * rPtr.

rPtr = &r3;
rPtr->setWidth(0.2);

Like other variables, and structs, an object can have a pointer that
references it indirectly.

Pointer to a Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r3;
Rectangle * rPtr.

rPtr = &r3;
rPtr->setWidth(0.2);

Like other variables, and structs, an object can have a pointer that
references it indirectly.

Use of the & operator to set the
pointer to hold the memory

address of the object.

Pointer to a Class

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle r3;
Rectangle * rPtr.

rPtr = &r3;
rPtr->setWidth(0.2);

Like other variables, and structs, an object can have a pointer that
references it indirectly.

Use of the -> reference
operator to access the public

members of the class.

Dynamically Allocated Objects

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle * rPtr.
rPtr = new Rectangle;

rPtr->setWidth(0.2);

Objects (like structs) can be dynamically allocated as well.

new operator allows for the
creation of a dynamically

allocated Rectangle object.

Dynamically Allocated Objects

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle * rPtr.
rPtr = new Rectangle;

rPtr->setWidth(0.2);
...
delete rPtr;

What gets dynamically allocated must eventually be freed.

delete operator frees the
memory of the dynamically
allocated Rectangle object.

Private Data

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

void Rectangle::setWidth(double w) {
width = w;

}

Having the data hidden and private allows for more intelligent and
safer handling of the object. Additionally it allows for better code
evolution.

Keep on getting errors!
Negative widths.

Need to update the
setWidth(...) function.

Private Data

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

void Rectangle::setWidth(double w) {
if(w >= 0)

width = w;
else {

cout << “Width is invalid!” << endl;
exit(EXIT_FAILURE); // quits the program

}
}

Does the rest of the
program need to change?

Private Data

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

void Rectangle::setWidth(double w) {
if(w >= 0)

width = w;
else {

cout << “Width is invalid!” << endl;
width = 0; // error handling

}
}

Less heavy handed.
But needs to be
documented!

Inline Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w) {

if(w >= 0)
width = w;

}
void setHeight(double h) {

if(h >= 0)
height = h;

}
double getArea() const;

};

Very small and simple functions can be declared inline to improve code
clarity and possible performance enhancements.

Inline Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w) {

if(w >= 0)
width = w;

}
void setHeight(double h) {

if(h >= 0)
height = h;

}
double getArea() const;

};

The actual call of the function gets replaced with a copy inline code.
Instead of the normal use of the call stack and jump in the program code.

Code gets copied.

Inline Member Functions

class Rectangle
{

private:
double width;
double height;

public:
void setWidth(double w) {

if(w >= 0)
width = w;

}
void setHeight(double h) {

if(h >= 0)
height = h;

}
double getArea() const;

};

The actual call of the function gets replaced with a copy inline code.
Instead of the normal use of the call stack and jump in the program code.

Inline functions are a
request to the compiler.

Code size grows
considerably with many

inline function calls.

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

A constructor is a special member function that gets called when the
class is instantiated.

Name of the constructor is the
same as a the class name.

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

A constructor is a special member function that gets called when the
class is instantiated.

Note the absence of a return
type!

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle() {
width = 0;
height = 0;

}

A constructor is a special member function that gets called when the
class is instantiated.

Defined like other member functions.

Common use: initialization of object data.

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle() {
width = 0;
height = 0;

}

A constructor is a special member function that gets called when the
class is instantiated.

Rectangle r1;

cout << r1.getArea() << endl;

What is printed?

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle() {
width = 0;
height = 0;

}

A constructor is a special member function that gets called when the
class is instantiated.

Rectangle r1;

cout << r1.getArea() << endl;

0

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle() {
width = 0;
height = 0;

}

A constructor is called also when an object is dynamically allocated.

Rectangle * rPtr;
rPtr = new Rectangle;

cout << rPtr->getArea() << endl;

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w, double h) {
width = h;
height = h;

}

Constructors also can have function parameters
(useful in initializing member data).

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w, double h) {
width = h;
height = h;

}

Use of parameters in instantiating the object looks similar to a function call.

Rectangle r1(0.1, 10.0);

cout << r1.getArea() << endl;

What is printed?

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w, double h) {
width = h;
height = h;

}

Use of parameters in instantiating the object looks similar to a function call.

Rectangle r1(0.1, 10.0);

cout << r1.getArea() << endl;

1.0

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w = 1.0, double h = 1.0) {
width = h;
height = h;

}

Default values can be set in the definition of the Constructor to create a
default constructor.

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w = 1.0, double h = 1.0) {
width = h;
height = h;

}

Default values can be set in the definition of the Constructor to create a
default constructor.

Rectangle r1;

cout << r1.getArea() << endl;

What is printed?

Constructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w = 1.0, double h = 1.0) {
width = h;
height = h;

}

Default values can be set in the definition of the Constructor to create a
default constructor.

Rectangle r1;

cout << r1.getArea() << endl;

1.0

Passing parameters in Dynamic Objects

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w = 1.0, double h = 1.0) {
width = h;
height = h;

}

Dynamically Allocated Objects can also have parameters passed to the Constructor.

Rectangle * rPtr;
rPtr = new Rectangle(2.0, 1.0);

cout << rPtr->getArea() << endl;

What is printed?

Passing parameters in Dynamic Objects

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::Rectangle(double w = 1.0, double h = 1.0) {
width = h;
height = h;

}

Dynamically Allocated Objects can also have parameters passed to the Constructor.

Rectangle * rPtr;
rPtr = new Rectangle(2.0, 1.0);

cout << rPtr->getArea() << endl;

2.0

Destructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
~Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Destructors are member functions that are called when the object is de-allocated.

Same as a constructor
except declaration uses a
~ to indicate that it is a

Destructor.

Destructors

class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
~Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::~Rectangle() {
cout << “Bye bye!” << endl;

}

Destructors are member functions that are called when the object is de-allocated.

Definition is the same.
Note no parameters are

ever used.

Destructors
class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
~Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::~Rectangle() {
cout << “Bye bye!” << endl;

}

int main() {
Rectangle r1(0.1, 10.0);

cout << r1.getArea() << endl;
}

Destructor
is called at
the end of
main().

What is printed?

Destructors
class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
~Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::~Rectangle() {
cout << “Bye bye!” << endl;

}

int main() {
Rectangle r1(0.1, 10.0);

cout << r1.getArea() << endl;
}

Destructor
is called at
the end of
main().

1.0
Bye bye!

Destructors
class Rectangle
{

private:
double width;
double height;

public:
Rectangle(double w, double h);
~Rectangle();
void setWidth(double w);
void setHeight(double h);
double getArea() const;

};

Rectangle::~Rectangle() {
cout << “Bye bye!” << endl;

}

int main() {
Rectangle * rPtr = new Rectangle(0.1, 10.0);

cout << rPtr->getArea() << endl;
delete rPtr;

}

Destructors of
dynamically
allocated objects
is called when the
delete operator is
used.

Design your own class.
class Cat
{

};

3 Member Variables
Constructor
Destructor
Accessor/Mutator Functions.

