
Inheritance
Creating a Class Hierarchy

CIS 15 : Spring 2007

Functionalia
HW 5 Out.

Due After Midterm 2.

Small Quiz on Thursday (on Classes)

Today:

• HW 5 Concepts

• Advanced Class Topics

Random Number Generation
How does one generate a random number between 1 and 100 (or 0 and 99)?

A computer can only generate pseudo-random numbers.

They are generated via an algorithm that approximates the distribution of a random
number sequence.

Every algorithm begins with a seed - a number that acts as the start-state (or first
number in the series). From there the algorithm generates a seemingly random
series of numbers (which will repeat after some HUGE number of iterations.

#include <cstdlib>

...

srand(9179071232); // Seed the Random Number Generator

cout << rand() << endl; // Generates a LARGE integer btw 0 and RAND_MAX

Random Number Generation

Problem: Every time you run your program with the same seed you
get the same sequences of number. That’s not very random!

Solution: Seed your random number generator with something that
changes every time you run your code. (Like the time!)

#include <cstdlib>

...

srand(time(NULL)); // Seed the Random Number Generator
 // with the current TIME

cout << rand() << endl; // Now you are generating differing LARGE numbers

Random Number Generation
Now: How do you change the range of the random numbers you are
generating so that it is the range that you want (like 1 to 100)?

Use modulus. (In C/C++ modulus uses the % character)

(Remember - modulus is the remainder in integer division)

10 % 3 = 1 (because 10 divided by 3 is 3 remainder 1)

#include <cstdlib>

...

srand(time(NULL));

cout << rand() % 100 << endl; // Random numbers btw 0 and 99
cout << (rand() % 100) + 1 << endl; // Random numbers btw 1 and 100

Random Number Generation

You can use a random number generator to generate a random string of
characters.

Write a for-loop that generates a MAX_SIZE number of characters.

#include <cstdlib>

#define MAX_SIZE 100
...

char letters[4] = {‘A’, ‘C’, ‘G’, ‘T’};

for...

Random Number Generation

You can use a random number generator to generate a random string of
characters.

Write a for-loop that prints out a MAX_SIZE number of characters.

#include <cstdlib>

#define MAX_SIZE 100
...

char letters[4] = {‘A’, ‘C’, ‘G’, ‘T’};

for(int i = 0; i < MAX_SIZE; i++)
{
cout << letters[rand() % 4] << endl;

}

Function Overloading

#include <iostream>
using namespace std;

void bark()
{
 cout << "Void bark!" << endl;
}

int bark()
{
 cout << "Integer bark!" << endl;
 return 0;
}

int main() {
int i = bark();
bark();

}

What happens in this case?

Function Overloading

#include <iostream>
using namespace std;

void bark()
{
 cout << "Void bark!" << endl;
}

int bark()
{
 cout << "Integer bark!" << endl;
 return 0;
}

int main() {
int i = bark();
bark();

}

What happens in this case?

Compiler Error!

overload.cpp: In function 'int bark()':
overload.cpp:9: error: new declaration 'int
bark()'
overload.cpp:4: error: ambiguates old
declaration 'void bark()'

Returning a const

#include <iostream>
using namespace std;

const int test_this()
{
 int i = 0;
 i++;
 return i;
}

int main() {
 cout << test_this() << endl;
}

Can you return a const?

Returning a const

#include <iostream>
using namespace std;

const int test_this()
{
 int i = 0;
 i++;
 return i;
}

int main() {
 cout << test_this() << endl;
}

Can you return a const?

Yes. But it is redundant and not-optimal.

Lakos, John. Large Scale C++ Software Design. (pg 618)

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i = 100, int j = 200)
 {
 cout << "Two Default Values" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

What gets printed?

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i = 100, int j = 200)
 {
 cout << "Two Default Values" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

Two Default Values
i: 20 j: 200

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i, int j = 200)
 {
 cout << "One Default Value" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

What gets printed?

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i, int j = 200)
 {
 cout << "One Default Value" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

One Default Value
i: 20 j: 200

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i = 100, int j)
 {
 cout << "One Default Value" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

What gets printed?

Constructor Being Called

#include <iostream>
using namespace std;

class Test
{

public:

 Test(int i = 100, int j)
 {
 cout << "One Default Value" << endl;
 cout << "i: " << i << " j: " << j << endl;
 }

};

int main() {
Test t(20);

}

Compiler Error!
constructor.cpp:22: error: no matching function
for call to 'Test::Test(int)'

Inheritance

No longer are Classes singularly defined lumped objects.
But they can be related to each other through
inheritance - which defines is-a-kind-of relationship.

(NOT to be confused by the has-a relationship)

Dog

Greyhound

Boxer Poodle

AiboRobot

Inheritance

Inheritance allows a new class to be based on an existing class.

The new class inherits all the member variables and functions (except
the constructors and destructors) of the class it is based on.

Dog

members

Base Class
(Parent)

Greyhound

members

Derived Class
(Child)Specialized

General

Hierarchy of Shapes

class Shape {
private:

double area;
public:

void setArea(double a)
{ area = a; }

double getArea()
{ return area; }

};

Let’s start with a shape class (a general base class)

No different than any other class that we’ve seen so far.

Hierarchy of Shapes

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Now we will define a child class to inherit properties from the parent.

Components of Class Inheritance

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Now we will define a child class to inherit properties from the parent.

Single ‘:’
indicates

inheritance

Components of Class Inheritance

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Now we will define a child class to inherit properties from the parent.

Class to inherit
from.

Class access specification

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Now we will define a child class to inherit properties from the parent.

Determines how
inherited members

are accessed.

Class access specification

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Determines how inherited members are accessed.

Private members
of parent class are
inaccessible by
the child class.

Child class uses a
public member

accessor function.

Class access specification

class Shape {
private:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 setArea(3.14 * r * r); }

double getRadius()
{ return radius; }

};

Public base class inheritance.

Public members of
the parent class
are treated as

public members of
the child class.

Use the Circle Class
class Shape {

private:

double area;

public:

void setArea(double a)

{ area = a; }

double getArea()

{ return area; }

};

class Circle : public Shape {

private:

double radius;

public:

void setRadius(double r)

{ radius = r;

 setArea(3.14 * r * r); }

double getRadius()

{ return radius; }

};

int main()
{

Circle c;

c.setRadius(10);

cout << c.getArea() << endl;

}

Output?

Use the Circle Class
class Shape {

private:

double area;

public:

void setArea(double a)

{ area = a; }

double getArea()

{ return area; }

};

class Circle : public Shape {

private:

double radius;

public:

void setRadius(double r)

{ radius = r;

 setArea(3.14 * r * r); }

double getRadius()

{ return radius; }

};

int main()
{

Circle c;

c.setRadius(10);

cout << c.getArea() << endl;

}

314

Use the Circle Class
class Shape {

private:

double area;

public:

void setArea(double a)

{ area = a; }

double getArea()

{ return area; }

};

class Circle : public Shape {

private:

double radius;

public:

void setRadius(double r)

{ radius = r;

 setArea(3.14 * r * r); }

double getRadius()

{ return radius; }

};

int main()
{

Circle c;

c.setRadius(10);
c.setArea(157);

cout << c.getArea() << endl;

cout << c.getRadius() << endl;

}

Output?

Use the Circle Class
class Shape {

private:

double area;

public:

void setArea(double a)

{ area = a; }

double getArea()

{ return area; }

};

class Circle : public Shape {

private:

double radius;

public:

void setRadius(double r)

{ radius = r;

 setArea(3.14 * r * r); }

double getRadius()

{ return radius; }

};

int main()
{

Circle c;

c.setRadius(10);
c.setArea(157);

cout << c.getArea() << endl;

cout << c.getRadius() << endl;

}

157
10

Is that correct?

No.
10 is not the radius of a circle of area 157.

Try to fix the Shape class to make it update.
class Shape {

private:
double area;

public:
void setArea(double a)

{ area = a;
 radius = sqrt(a / 3.14); }

double getArea()
{ return area; }

};

class Shape {
private:

double area;
public:

void setArea(double a)
{ area = a;
 radius = sqrt(a / 3.14); }

double getArea()
{ return area; }

};

error: 'radius' was not declared in this scope

class Shape {
private:

double area;
public:

void setArea(double a)
{ area = a;
 setRadius(sqrt(a / 3.14)); }

double getArea()
{ return area; }

};

Shape class knows nothing about Circle Class

Shape

Circle

Protected Members and Class Access

class Shape {
protected:

double area;
public:

void setArea(double a)
{ area = a; }

double getArea()
{ return area; }

};

Protected members are like private members, but they may be
accessed by derived classes.

private to everybody,
except to Shape class and

derived classes.

Protected Members

class Shape {
protected:

double area;
public:

void setArea(double a) { area = a; }
double getArea() { return area; }

};

class Circle : public Shape {
private:

double radius;
public:

void setRadius(double r)
{ radius = r;
 area = 3.14 * r * r; }

double getRadius()
{ return radius; }

};

Circle class can
access the area

member.

Base Class Access Specifiers

class Circle : public Shape

Private members of the Shape (Base) class are
inaccessible to the Circle (Derived Class)

Protected members of the Shape (Base) class become
Protected members of the Circle (Derived Class)

Public members of the Shape (Base) class become Public
members of the Circle (Derived Class)

Can be flexible about how derived classes can access it’s
inherited parent class members.

Base Class Access Specifiers

class Circle : public Shape

Private members of the Shape (Base) class are
inaccessible to the Circle (Derived Class)

Protected members of the Shape (Base) class become
Protected members of the Circle (Derived Class)

Public members of the Shape (Base) class become Public
members of the Circle (Derived Class)

Can be flexible about how derived classes can access it’s
inherited parent class members.

Base Class Access Specifiers

class Circle : protected Shape

Private members of the Shape (Base) class are
inaccessible to the Circle (Derived Class)

Protected members of the Shape (Base) class become
Protected members of the Circle (Derived Class)

Public members of the Shape (Base) class become
Protected members of the Circle (Derived Class)

Declaring a protected Base class accessor is more restrictive
than a public Base class accessor.

Base Class Access Specifiers

class Circle : private Shape

Private members of the Shape (Base) class are
inaccessible to the Circle (Derived Class)

Protected members of the Shape (Base) class become
Private members of the Circle (Derived Class)

Public members of the Shape (Base) class become Private
members of the Circle (Derived Class)

Declaring a private Base class accessor is even more
restrictive than a protected Base class accessor.

Base Class Access Specifiers

private: x
protected: y
public: z

Base Class Members How they appear in the
Derived Class

private: x
protected: y
public: z

private: x
protected: y
public: z

x is inaccessible
private: y
private: z

x is inaccessible
protected: y
protected: z

x is inaccessible
protected: y
public: z

private base class

protected base class

public base class

Base Class Access Specifiers

class Circle : Shape

class Circle : private Shape

Private members of the Shape (Base) class are
inaccessible to the Circle (Derived Class

Protected members of the Shape (Base) class become
Protected members of the Circle (Derived Class)

Public members of the Shape (Base) class become Public
members of the Circle (Derived Class)

If no Access Specifier is given, the it is private by default.

by default

Extend your Cat class through a UML Diagram.
class Cat
{

};

3 Member Variables
Constructor
Destructor
Accessor/Mutator Functions.

