
Multiple File Programs
Pre-processor

CIS 15 : Spring 2007

Functionalia

Today:

• Multiple File Compilation

• Pre-processor

•

 Multiple File Programs

By now your programs have and will grow to be unwieldy in
one .cpp file.

You can split your program up into multiple files.

In C++ - it is customary to separate your Classes so you have one
class per file.

 Multiple File Programs

Homework 5 is a file that contains 3 classes:

 Policy, Gene, Generation

hw5.cpp

 Multiple File Programs

Extract the 3 classes and put them into their own file.
Policy.cpp, Gene.cpp, Generation.cpp

Policy.cpp

Gene.cpp

Generation.cpp

hw5.cpp

 Multiple File Programs
In fact, we will split each on of our .cpp files into two files.

Header File (.h) - contains Class Definitions, Prototypes, Constants

Code File (.cpp) - contains External function definitions, (i.e. main())

Policy.cpp

Gene.h

Generation.h

hw5.h

Policy.h

Gene.cpp

Generation.cpp

hw5.cpp

Gene.h - holds the Class

//
// Gene Class:
// Holds information about one Gene. Information includes the
// genotype, it's fitness rating (according to the current Policy),
// the generation it comes from, and whether this Gene has been mutated.

class Gene {
 private:
 static const int SIZE = 10;
 string genotype;
 double fitness;
 int generation;
 bool mutant;

 public:
 Gene(Policy & policy, int gen_id);
 Gene(Gene * parent1, Gene * parent2, int gen_id);

 double calcFitness(Policy & policy);
 double getFitness() const { return fitness; }
 void mutate(Policy & policy);
};

Gene.cpp holds the external member functions
//
// Gene Class

// Constructor: Randomly generates a Gene from the provided Policy.
// The Gene's generation is set to gen_id.
// (Used in this simulation to generate the initial Generation of Genes)

Gene::Gene(Policy & policy, int gen_id = 0)
{

}

// Constructor: This generates a Gene from two parent Genes (provided by pointers),
// by choosing a split point randomly. The first half of parent1 becomes the beginning
// of the new Gene's genotype, and the seocond half of parent2 is appended to the new
// genotype.
// The Gene's generation is set to gen_id.

Gene::Gene(Gene * parent1, Gene * parent2, int gen_id)
{

}

// Calculates the Gene's fitness according to the Policy
// Fitness is calculated by summing the scores of all of the traits that
// are present in the Gene's genotype string.
double Gene::calcFitness(Policy & policy)
{

Use #include to link files together

#include “Gene.h”

//
// Gene Class

// Constructor: Randomly generates a Gene from the provided Policy.
// The Gene's generation is set to gen_id.
// (Used in this simulation to generate the initial Generation of Genes)

Gene::Gene(Policy & policy, int gen_id = 0)
{

}

// Constructor: This generates a Gene from two parent Genes (provided by pointers),
// by choosing a split point randomly. The first half of parent1 becomes the beginning
// of the new Gene's genotype, and the seocond half of parent2 is appended to the new
// genotype.
// The Gene's generation is set to gen_id.

Gene::Gene(Gene * parent1, Gene * parent2, int gen_id)
{

}

// Calculates the Gene's fitness according to the Policy
// Fitness is calculated by summing the scores of all of the traits that

Use quotes to indicate a local header file

#include “Gene.h”

//
// Gene Class

// Constructor: Randomly generates a Gene from the provided Policy.
// The Gene's generation is set to gen_id.
// (Used in this simulation to generate the initial Generation of Genes)

Gene::Gene(Policy & policy, int gen_id = 0)
{

}

// Constructor: This generates a Gene from two parent Genes (provided by pointers),
// by choosing a split point randomly. The first half of parent1 becomes the beginning
// of the new Gene's genotype, and the seocond half of parent2 is appended to the new
// genotype.
// The Gene's generation is set to gen_id.

Gene::Gene(Gene * parent1, Gene * parent2, int gen_id)
{

}

// Calculates the Gene's fitness according to the Policy
// Fitness is calculated by summing the scores of all of the traits that

hw5.cpp would #include all of the Header Files

#include “Gene.h”

#include “Generation.h”

#include “Policy.h”

#include <fstream>

#include <iostream>

int main()

{

...

...

...

}

any order

#include glues files together

Gene.h

Generation.h

Policy.h

hw5.cpp
hw5.cpp

Gene.h

Generation.h

Policy.h

fstream

iostream

from the
system
include

directory

compiled!

Problem! Circular Definition

Gene.h

hw5.cpp

#include “Gene.h”

#include “Generation.h”

#include “Policy.h”

...

#include “Gene.h”

...

hw5.cpp

Generation.h

1.

Problem! Circular Definition

Gene.h

Generation.h

hw5.cpp

#include “Gene.h”

#include “Generation.h”

#include “Policy.h”

...

#include “Gene.h”

...

hw5.cpp

Generation.h

1.
2.

Problem! Circular Definitions

Gene.h

Generation.h

hw5.cpp

#include “Gene.h”

#include “Generation.h”

#include “Policy.h”

...

#include “Gene.h”

...

hw5.cpp

Generation.h

1.
2.

3.

Multiple Definitions of
the Gene Class!!!

Solution ! Use include guards

#include “Gene.h”

#include “Generation.h”

#include “Policy.h”

...

#include “Gene.h”

...

hw5.cpp

Generation.h

Leave your .cpp
files alone.

Solution ! Use include guards

#ifndef GENERATION_H

#define GENERATION_H

#include “Generation.h”

...

#endif

#ifndef GENE_H

#define GENE_H

...

#endif

Generation.h

Gene.h

1. Create a #define’d constant
(i.e. a Pre-processor constant)
for the first time the pre-
processor passes over it.

Solution ! Use include guards

#ifndef GENERATION_H

#define GENERATION_H

#include “Gene.h”

...

#endif

#ifndef GENE_H

#define GENE_H

...

#endif

1. Create a #define’d constant
(i.e. a Pre-processor constant)
for the first time the pre-
processor passes over it.

2. Skip Code for the
rest of the pre-
processor passes.

Generation.h

Gene.h

Now what about those .cpp files?

$ ls

Gene.h Gene.cpp Generation.h Generation.cpp Policy.h Policy.cpp

hw5.cpp

$ g++ Gene.cpp -c -o Gene.o

$ g++ Generation.cpp -c -o Generation.o

$ g++ Policy.cpp -c -o Policy.o

$ g++ hw5.cpp -c -o hw5.o

$ g++ Gene.o Generation.o Policy.o hw5.o -o hw5.exe

$ hw5.exe policy.txt gen 10

Every file gets compiled separately into object files.

At the last step they get linked together into the final binary

Now what about those .cpp files?

$ ls

Gene.h Gene.cpp Generation.h Generation.cpp Policy.h Policy.cpp

hw5.cpp

$ g++ Gene.cpp -c -o Gene.o

$ g++ Generation.cpp -c -o Generation.o

$ g++ Policy.cpp -c -o Policy.o

$ g++ hw5.cpp -c -o hw5.o

$ g++ Gene.o Generation.o Policy.o hw5.o -o hw5.exe

$ hw5.exe policy.txt gen 10

-c flag compiles but does not link

Use a wildcard (*) to compile faster
$ ls

Gene.h Gene.cpp Generation.h Generation.cpp Policy.h Policy.cpp

hw5.cpp

$ g++ *.cpp -c

All of the .cpp files are compiled and the outputs become .o files.

So, Generation.cpp becomes Generation.o

$ g++ *.o -o hw5.exe

$ hw5.exe policy.txt gen 10

Pre-processor directives

Directives begin with a # and use no semi-colon.
#include

#define

#ifdef, #ifndef, #endif

#if, #elif, #else, #endif

#error

Important to note: pre-processor does not
understand C++.

Lines included in the code that direct the pre-processor in it’s interpretation of the code.

Pre-processor

Code: *.cpp *.h

Compiler

Linker

Binary

#include

Combines files (we just covered this):

System
#include <file>

Local Directory
#include “file.h”

Local Directory can include file paths

#include “include/file.h”

#define

Does a replacement identifier:

Constants
#define CONSTANT 1

int small[CONSTANT]; int small[1];

Macros
#include getmax(a,b) ((a)>(b)?(a):(b))

int value = getmax(1,x+1); int value = ((1)>(x+1)?(1):(x+1));

#define Macros
Macros have these operators

String Operator #
#define qw(a) # a

cout << qw(hi how are you); cout << “hi how are you”;

Concatenate Instruction ##
#define glue(a,b) a ## b

glue(c,out) << “test”; cout << “test”;

#ifdef, #ifndef, #endif
Conditionals on Definitions

Include Guard
#ifndef GENE_H

#define GENE_H

... code ...

#endif

#if, #elif, #else, #endif

Conditionals on Defined Values

Compile Time Defines

#if GEN_SIZE < 20

... code ...

#elif GEN_SIZE < 100

... code ...

#else

... code ...

#endif

#error

Prints a compile-time error

Compile Time Defines

#ifndef __cplusplus

#error A C++ compiler is required!

#endif

Error prints the file name, the line number, and the error message.

Predefined Macros

__LINE__
Integer value representing the current
line in the source code file being
compiled.

__FILE__ A string literal containing the presumed
name of the source file being compiled.

__DATE__
A string literal in the form "Mmm dd yyyy"
containing the date in which the
compilation process began.

__TIME__
A string literal in the form "hh:mm:ss"
containing the time at which the
compilation process began.

__cplusplus An integer value. All C++ compilers have
this constant defined to some value.

// standard macro names

#include <iostream>

using namespace std;

int main()

{

 cout << "This is the line number " << __LINE__;

 cout << " of file " << __FILE__ << ".\n";

 cout << "Its compilation began " << __DATE__;

 cout << " at " << __TIME__ << ".\n";

 cout << "The compiler gives a __cplusplus value of "

 << endl << __cplusplus << endl;

 return 0;

}

This is the line number 7 of file macro.cpp.

Its compilation began Apr 26 2007 at 09:50:04.

The compiler gives a __cplusplus value of 1

Chipp:~/Teaching/Programming_CIS15/Le

