
Polymorphism
CIS 15 : Spring 2007

Functionalia

Today:

• Polymorphism

• Virtual Functions

• Abstract Classes

• Multiple Inheritance

Dogs
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet1;

Dog * pet2;

pet1 = new Dog;

pet2 = new Poodle;

pet1->bark();

pet2->bark();

delete pet1;

delete pet1;

}

Dog

Poodle

+ bark() : void

+ wag() : void

Using a Dog pointer to store a Poodle
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet1;

Dog * pet2;

pet1 = new Dog;

pet2 = new Poodle;

pet1->bark();

pet2->bark();

delete pet1;

delete pet2;

}

Is this legal?

Upcasting
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet1;

Dog * pet2;

pet1 = new Dog;

pet2 = new Poodle;

pet1->bark();

pet2->bark();

delete pet1;

delete pet2;

}

Since Poodle is-a kind of Dog:

A Dog pointer can be used to
reference to the Poodle class.

(the Poodle object is upcast to a Dog)

A Poodle always inherits bark()

Upcasting
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet1;

Dog * pet2;

pet1 = new Dog;

pet2 = new Poodle;

pet1->bark();

pet2->wag();

delete pet1;

delete pet2;

}

Is this legal?

Upcasting
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet1;

Dog * pet2;

pet1 = new Dog;

pet2 = new Poodle;

pet1->bark();

pet2->wag();

delete pet1;

delete pet2;

}

No. Compile-time error.
 error: 'class Dog' has no member named 'wag'

The is-a relationship does not work in reverse.

Downcasting
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void wag() { cout << “wag! wag!” << endl; }
};

int main() {

Dog * pet;

pet = new Poodle;

pet->bark();

Poodle * pet2 = static_cast<Poodle *>(pet);

pet2->wag();

delete pet;

}

Work-Around
Recast the Dog pointer

to a Poodle Pointer

messy

Dog

Polymorphism

Polymorphism allows for a reference variable or an object pointer
reference objects of different types (i.e. Poodle vs. Retriever), and to call
the correct member functions(i.e. bark()), depending on the type of
object being referenced.

Poodle Retriever

+ bark() : void

+ bark() : void + bark() : void

Dogs and their bark()
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {

Dog * pet;

pet = new Dog;

pet->bark();

delete pet;

}

What kind of bark?

Dogs and their bark()
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {

Dog * pet;

pet = new Dog;

pet->bark();

delete pet;

}

bark bark!

Dogs and their bark()
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
srand(time(NULL));
Dog * pet;
if((rand()%2) == 0)

pet = new Poodle;

else
pet = new Retriever;

pet->bark();
delete pet;

}

Suppose we do
not know the
type of Dog at

run-time.

Dogs and their bark()

class Dog {
public:

void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

Simplified.

What kind of bark?

Dogs and their bark()

class Dog {
public:

void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

bark bark!
Why?

bark() is statically bound

class Dog {
public:

void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

The compiler binds the function call to
the only class it knows about at the

time, the Dog class.

Also called early binding.

virtual functions allow for virtual binding

class Dog {
public:

virtual void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

Now, the function that will be called
depends on the type of the object and is

decided at runtime.

What kind of bark?

virtual functions allow for virtual binding

class Dog {
public:

virtual void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

woof! woof!

virtual binding also called late binding
because the function to call is decided at

a later time during runtime.

All bark() functions are virtual in hierarchy
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

virtual void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

virtual void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

Although not necessary to explicitly
define them as virtual:

A function defined as virtual in the base
class is virtual in the derived classes.

Virtual Functions extend through Multiple Levels of inheritance
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class FrenchPoodle : public Poodle {
public:

void bark() { cout << “ouah! ouah!” << endl; }

};

int main() {
Dog * pet;
pet = new FrenchPoodle;

pet->bark();
delete pet;

}

(source http://www.georgetown.edu/faculty/ballc/animals/dog.html)

Virtual Functions extend through Multiple Levels of inheritance
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class FrenchPoodle : public Poodle {
public:

void bark() { cout << “ouah! ouah!” << endl; }
};

int main() {
Dog * pet;
pet = new FrenchPoodle;

pet->bark();
delete pet;

}

(source http://www.georgetown.edu/faculty/ballc/animals/dog.html)

ouah! ouah!

Redefining versus Overriding
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class FrenchPoodle : public Poodle {
public:

void bark() { cout << “ouah! ouah!” << endl; }
};

int main() {
Dog * pet;
pet = new FrenchPoodle;

pet->bark();
delete pet;

}

Virtual functions override a
Base Class’s function

overrides

overrides

Redefining versus Overriding
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class FrenchPoodle : public Poodle {
public:

void bark() { cout << “ouah! ouah!” << endl; }
};

Virtual functions override a
Base Class’s function

dynamic and run-time

overrides

overrides

Redefining versus Overriding
class Dog {

public:
void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class FrenchPoodle : public Poodle {
public:

void bark() { cout << “ouah! ouah!” << endl; }
};

Non Virtual functions redefine
a Base Class’s function

static and compile time

redefines

redefines

Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
Poodle() { chewy = new Toy; }

~Poodle() { delete chewy; }
private:

Toy * chewy;
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();
delete pet;

}

Poodle contains a
dynamically allocated object

(a chew Toy)

Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
Poodle() { chewy = new Toy; }

~Poodle() { delete chewy; }
private:

Toy * chewy;
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();
delete pet;

}

Poodle object is referenced
through a Base Class pointer.

Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
Poodle() { chewy = new Toy; }

~Poodle() { delete chewy; }
private:

Toy * chewy;
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();
delete pet;

}

Will all of the dynamic
memory be de-allocated?

Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
Poodle() { chewy = new Toy; }

~Poodle() { delete chewy; }
private:

Toy * chewy;
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();
delete pet;

}

No.
Default Destructor is
called (~Dog())

Solution?

Virtual Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }
virtual ~Dog();

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }

Poodle() { chewy = new Toy; }
~Poodle() { delete chewy; }

private:
Toy * chewy;

};

int main() {
Dog * pet;

pet = new Poodle;

pet->bark();
delete pet;

}

Declaring the Base Class
Destructor Virtual guarantees
that the appropriate Object’s

Destructor is called.

Virtual Destructors
class Dog {

public:
virtual void bark() { cout << “bark bark!” << endl; }
virtual ~Dog();

};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }

Poodle() { chewy = new Toy; }
~Poodle() { delete chewy; }

private:
Toy * chewy;

};

int main() {
Dog * pet;

pet = new Poodle;

pet->bark();
delete pet;

}

If the Base Class contains
virtual functions, it is always

good programming practice to
declare the destructors

virtual.

Dog

UML and Virtual Functions

Virtual Functions in the Base Class are commonly shown in italics in UML.

Poodle Retriever

+ bark() : void

+ bark() : void + bark() : void

Dog

Abstract Base Class

Sometimes the Object Hierarchy should start with a common Base Class
that is Generic and Abstract and would not ever be implemented itself.

Here, Poodles and Retrievers would be instantiated, but never the Dog
class on its own. (Of course Dog pointers would still be used.)

Poodle Retriever

+ bark() : void

+ bark() : void + bark() : void

Make Dog an Abstract Class

class Dog {
public:

virtual void bark() { cout << “bark bark!” << endl; }
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

Virtual functions in Abstract Base
classes would not have an code

associated to them.

Make Dog an Abstract Class

class Dog {
public:

virtual void bark() = 0;
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Poodle;

pet->bark();

delete pet;

}

They are pure virtual functions.

Indicated by the “= 0”

Have no body or definition in base class.

Make Dog an Abstract Class

class Dog {
public:

virtual void bark() = 0;
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Dog;

pet->bark();

delete pet;

}

An Abstract Class cannot be instantiated.

error: cannot allocate an object of abstract type 'Dog'

Multiple Inheritance

class Dog {
public:

virtual void bark() = 0;
};

class Poodle : public Dog {
public:

void bark() { cout << “woof! woof!” << endl; }
};

class Retriever : public Dog {
public:

void bark() { cout << “arf! arf!” << endl; }
};

int main() {
Dog * pet;
pet = new Dog;

pet->bark();

delete pet;

}

An Abstract Class cannot be instantiated.

error: cannot allocate an object of abstract type 'Dog'

Barkable

Sea Lions Bark too! Multiple Inheritance

C++ is an Object Oriented Language that supports Multiple Inheritance

in classes, which allow for a more extensible hierarchies of Classes.

Poodle

+ bark() : void

+ bark() : void

SeaLion

+ bark() : void

MarineMammal

A Class can Inherit from more that One Class

class MarineMammal {
...

};

class Barkable {
public:

virtual void bark() = 0;
};

class SeaLion : public MarineMammal, public Barkable {
public:

void bark() { cout << “arf! arf!” << endl; }
};

A SeaLion is a type of MarineMammal and is a Barkable object.

Inherits all members of both Classes (i.e. and their hierarchies).

Constructors are called in Order that they are Listed

class SeaLion : public MarineMammal, public Barkable {
public:

void bark() { cout << “arf! arf!” << endl;

SeaLion() {}
};

1.MarineMammal constructor is called.
2. Barkable constructor is called.
3. SeaLion constructor is called.

1. 2.

3.

Date and Time Classes : Multiple Inheritance

class Date {
protected:

int day;
int month;
int year;

public:
Date(int d, int m, int y) {

day = d; month = m; year = y;
}

};

class Time {
protected:

int hour;
int min;
int sec;

public:
Time(int h, int m, int s) {

hour = h; min = m; sec = s;
}

};

DateTime Combined Class with Constructor

class DateTime : public Date, public Time

{

public:

DateTime(int dy, int mon, int yr, int hr, int mn, int sc);

...

};

DateTime::DateTime(int dy, int mon, int yr, int hr, int mn, int sc) :
Date(dy, mon, yr), Time(hr, mt, sc)

{

...

}

DateTime Combined Class with Constructor

class DateTime : public Date, public Time

{

public:

DateTime(int dy, int mon, int yr, int hr, int mn, int sc);

...

};

DateTime::DateTime(int dy, int mon, int yr, int hr, int mn, int sc) :
Date(dy, mon, yr), Time(hr, mt, sc)

{

...

}

Constructor Definition

DateTime Combined Class with Constructor

class DateTime : public Date, public Time

{

public:

DateTime(int dy, int mon, int yr, int hr, int mn, int sc);

...

};

DateTime::DateTime(int dy, int mon, int yr, int hr, int mn, int sc) :
Date(dy, mon, yr), Time(hr, mt, sc)

{

...

}
Inherited Constructors

Interfaces

class MarineMammal {
...

};

class Barkable {
public:

virtual void bark() = 0;
};

class SeaLion : public MarineMammal, public Barkable {
public:

void bark() { cout << “arf! arf!” << endl; }
};

An Abstract Base class can be thought of as an interface
(through its pure virtual functions) for a class that derives from it.

Multiple Inheritance allows for multiple interfaces.

Interfaces

class MarineMammal {
...

};

class Barkable {
public:

virtual void bark() = 0;
};

class SeaLion : public MarineMammal, public Barkable {
public:

void bark() { cout << “arf! arf!” << endl; }
};

An Abstract Base class can be thought of as an interface
(through its pure virtual functions) for a class that derives from it.

Multiple Inheritance allows for multiple interfaces.

Barkable Interface allows
other classes to pass the

bark() message to SeaLion.

Interfaces
class Printable {

public:

virtual void print(string printer) = 0;

};

class Emailable {
public:

virtual void email(string sender, string rcpt) = 0;

};

class WordDoc : public Document, public Printable, public Emailable {
public:

void WordDoc();

...
};

Java has a type of class that is called an Interface that serves this purpose.

More Stuff About Classes

Friends

A class can declare a function of another class or another class
itself a friend. A friend can have access to the private
members of a class.

This is specified as a list of functions and classes in the class
description.

class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend void Promoter::addToVIPList(Club & c, string name);

};

Friends

A class can declare a function of another class or another class
itself a friend. A friend can have access to the private
members of a class.

This is specified as a list of functions and classes in the class
description.

class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend void Promoter::addToVIPList(Club & c, string name);

};

Friend keyword

Friends

A class can declare a function of another class or another class
itself a friend. A friend can have access to the private
members of a class.

This is specified as a list of functions and classes in the class
description.

class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend void Promoter::addToVIPList(Club & c, string name);

};

Function that has private access

Friends
class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend void Promoter::addToVIPList(Club & c, string name);

};

class Promoter {

public:

void addToVIPList(Club & c, string name) {

c.VIPs.push_back(name);

}

};

Access to private member
through dot-notation

Forward declaration of Promoter
class Promoter;

class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend void Promoter::addToVIPList(Club & c, string name);

};

class Promoter {

public:

void addToVIPList(Club & c, string name) {

c.VIPs.push_back(name);

}

};

Need to let the Club Class
know that the Promoter

class exists.

Can also friend Classes as a whole
class Promoter;

class Club {

private:

vector<string> VIPs;

public:

bool gainAccess(string name);

friend class Promoter;

};

class Promoter {

public:

void addToVIPList(Club & c, string name) {

c.VIPs.push_back(name);

}

};

Static Members of Classes

Classes can have static member variables, single instances of a variable
which do not belong to any specific object instance of that class.

They act like global variables.
class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

int getCount() { return count; }

);

int Tree::count = 0;

Static Members of Classes

Classes can have static member variables, single instances of a variable
which do not belong to any specific object instance of that class.

They act like global variables.
class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

int getCount() { return count; }

);

int Tree::count = 0;

Static Member Declared

Static Member Defined

Static Members of Classes
class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

int getCount() const { return count; }

);

int Tree::count = 0;

int main() {

Tree elm;

Tree oak;

Tree pine;

cout << “Trees so far: “ << elm.getCount() << endl;

}

Static Members of Classes

Trees so far: 3

elm oak pine

count = 3

class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

int getCount() const { return count; }

);

int Tree::count = 0;

int main() {

Tree elm;

Tree oak;

Tree pine;

cout << “Trees so far: “ << elm.getCount() << endl;

}

class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

static int getCount() const { return count; }

);

int Tree::count = 0;

int main() {

Tree elm;

Tree oak;

Tree pine;

cout << “Trees so far: “ << Tree::getCount() << endl;

}

Member Functions can be static as well.

Can be accessed
without an object

instance.

Accessed with the ::
scope operator

Static Functions can only access Static Members

What is returned in this case?
class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

static int getCount() const { return count; }

);

int Tree::count = 0;

int main() {

cout << “Trees so far: “ << Tree::getCount() << endl;

}

Static Functions can only access Static Members

0
class Tree {

private:

static int count;

public:

Tree() {

count++;

}

~Tree() {

count--;

}

static int getCount() const { return count; }

);

int Tree::count = 0;

int main() {

cout << “Trees so far: “ << Tree::getCount() << endl;

}

 Midterm Review on Thursday.

