Searching and Sorting

CIS |5

Functionalia

Next Class in 2 Wednesdays
Extra Office Hours Next Week (Tuesday evening)

No more Office Hours on Thursdays

HW | is Out (Review C++ / Arrays / Buffet)
e DUE FRIDAY 23rd, | I:59 PM
® Submission Details TBA!

|4 out of |9 students e-mailed me their history:
$ history > my history.txt

S mail chipp@sci.brooklyn.cunvy.edu <

mailto:chipp@sci.brooklyn.cuny.edu
mailto:chipp@sci.brooklyn.cuny.edu

Summary

® Finish Multi-Dimensional Arrays
® Array Sorting
® Linear Search

® Binary Search

More than 2 Dimensions

int cubes[3][5][8];

o I 2 3 4 5 6 7

cubes[0] [3][1]

cubes[2] [0] [4]
cubes[1l] [2] [7]

Example: Images Stored As Multi-Dimensional Arrays

>
rg

How would one write a
Multi-Dimensional Array
to Store this Image!

What about a Photo Album?

Multi-Arrays in Functions

First Dimension is Unspecified (Number of Photos).

#define SIZE X 320
i define SIZE Y 240

#define RGB DEPTH 3

void process (int album[] [SIZE Y] [SIZE X] [RGB DEPTH]) ;

Search

Arrays are useful in
performing search functions.

What is the access time to
retrieve an item in an array!
(In other words, how many
steps to read and write a
member of an array?)

Two Kinds:

Linear Search (Sequential Search)

Binary Search

Linear Search

list[9] > 8(0

* Goal: Search for the number ‘6’

* Start at the beginning (i.e. list[0])

1
* Iterate through the array (step through) till one gets the

number 6. What is it’s array index!?

* Will you always find what your looking for?

* What is the MAXIMUM number of steps to find a number?

* Simple to Implement.

* What about looking up “H. Zzpitz” in the Phone Book!?

Linear Search

int searchlist(int list[], int numElems, int wvalue)

{

int index = 0; // Used as a subscript to search array
int position = -1; // To record position of search value
bool found = false; // Flag to indicate if the value was found

while (index < numElems && !found)

{
if (list[index] == wvalue)
{
found = true;
position = index;
}

index++;

}

return position;

// If the value is found

// Set the flag
// Record the value's subscript

// Go to the next element

// Return the position, or -1

Binary Search

lower
(7

list[9] > 1 (2(3|4

middle

Goal: Search for the number ‘9’
Step 0 Assumption that the Array is sorted in order.

Step | Start in the MIDDLE or the array. Is the element you're
looking at the candidate?

Step 2 No! Then decide to consider the upper or lower part of
the array based on the value of the candidate.

Step 3 Repeat with that part as a “new’” array and go to Step |

Binary Search for number ‘¢’

upper lower upper
PP > < <€ PP >

789|o§>|234l6789

7/8]s #>‘]9

middle
u

<>
JBlelig - [F[20sf4[s]e - Blslio

middle Success: Found “6”

Binary Search

int binarySearch (int list[], int numElems, int value)

{

Use Linear Search
as your template.

Without using your
book.

Write a Binary
Search

Algorithm.

Binary Search

int binarySearch(int array[], int numelems, int value)
{
int first = 0, // First array element
last = numelems - 1, // Last array element
middle, // Mid point of search
position = -1; // Position of search value
bool found = false; // Flag

while ('found && first <= last)
{
middle = (first + last) / 2; // Calculate mid point
if (array[middle] == wvalue) // If value is found at mid
{
found = true;
position = middle;
}
else if (array[middle] > value) // If value is in lower half
last = middle - 1;
else
first = middle + 1; // If value is in upper half
}

return position;

Binary Search

Binary more efficient by a power of 2.

Array must be sorted!

N items

Linear Search

Binary Search

|0

|0

4

100

100

/

1000

1000

10

10,000

10,000

14

100,000

100,000

17

1,000,000

1,000,000

20

Sorting

Sorting aids in search.

Look at Two Algorithms:
Bubble Sort

Selection Sort

Bubble Sort

Choose ascending or descending order.

Example: (Sort in ascending order)

Compare

Swap

Compare

Bubble Sort

After First Pass

2
0

Are we there yet?

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

Bubble Sort

Compare

Bubble Sort

Compare

2
0

No Swap.

Keep on Going.

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

Bubble Sort

Compare

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

No Swap.

Keep on Going.

Bubble Sort

Compare

2
0

Bubble Sort

Compare

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

Bubble Sort

Compare

2
0

No Swap.

Keep on Going.

Bubble Sort

Compare

Bubble Sort

Compare

Bubble Sort

Compare

Bubble Sort

Compare

Bubble Sort

Compare

I
0

No Swap.

We're Done. (But the computer isn’t)

Need to go through for one last verification pass.

Bubble Sort

What’s the worse case scenario?

How many passes!?

Not so great on LARGE data set, only moves one
element at a time.

Bubble Sort

void sortArray(int array[], int size)

{

bool swap;
int temp;

do
{

swap = false;
for (int count = 0; count < (size - 1); count++)

{

if (array[count] > array[count + 1])
{
temp = array|[count];
array[count] = array[count + 1];
array[count + 1] = temp;
swap = true;

}
} while (swap);

Selection Sort

Finds smallest value.

Moves it to the first part of the array.

Search

Selection Sort

Array is sorted up to the first element.

Search

Selection Sort

Array is sorted up to element |I.

Search

Selection Sort

Array is sorted up to element 2.

Search

Selection Sort

Array is sorted up to element 3.

Search

Selection Sort

Array is sorted up to element 4.

Search

Selection Sort

What’s the worst case scenario?

How many passes through the data!?

void selectionSort(int array[], int size)

{

Selection Sort

void selectionSort(int array|[],

{

int size)

int startScan, minIndex, minValue;

for (startScan = 0; startScan < (size - 1); startScan++)
{

minIndex = startScan;

minValue = array[startScan];

for (int index = startScan + 1; index < size; index++)
{

if (array[index] < minValue)

{
minValue = array[index];
minIndex = index;

}

array[minIndex] = array[startScan];

array[startScan] = minValue;

Readings Following
Week

Chapter 8.1 - 8.4

