
Recursion
CIS 15 : Spring 2007

Functionalia

HW 1 is DUE FRIDAY 23rd, 11:59 PM

• Do the BASIC Program First!

• Connect Four

Today:

• How to Submit HW

• Some UNIX Stuff

• Recursion

FLOW CHART EXAMPLE

Submitting Homework

Submit Homework by running a script on your homework file:

$ ~chipp/Public/bin/hw1-submit hw1.cpp

(hw1.cpp is the name of your HomeWork 1 file)

Don’t forget the tilde (~) at the beginning of the command!

Alternatively, try this:

$ /users1/chipp/Public/bin/hw1-submit hw1.cpp

And if all else fails, e-mail your hw1.cpp file to me at:

chipp@sci.brooklyn.cuny.edu

Finally, please check that your program runs on the UNIX machines!

mailto:chipp@sci.brooklyn.cuny.edu
mailto:chipp@sci.brooklyn.cuny.edu

UNIX Un-Frustations

Fix your Backspace / Delete Key

$ pioc^?^?

$ setty erase

$ setty erase

Run tcsh when you login

$ tcsh

> exit

$ exit

[logged out]

* From Cha. 27,28 and Appendix A: Just Enough UNIX *

delete

backspace

UNIX Un-Frustations

Fix your Terminal Setting (For those logging in from home)

For ksh (the default shell when you log in)

$ TERM=vt100

$ export TERM

For tcsh (if you specify it when you log in)

$ setenv TERM vt100

Advanced Users (try running screen)

$ screen

More Info on Screen

• http://www.bangmoney.org/presentations/screen.html

http://www.bangmoney.org/presentations/screen.html
http://www.bangmoney.org/presentations/screen.html

Recursion

#include <iostream>

using namespace std;

void message()

{

cout << “I’ve been feeling somewhat repetitive lately.\n”;

message();

}

void main()

{

message();

}

Try it out

$ cd recursion

$./recur

Recursion

main()

message()

message()

message()

message()
until...

Call Stack Over Flow

Call Stack - a special stack
(LIFO) is used to keep track of
information about the currently
active functions in a computer
program (technically a single task
in a program).

Stored Information: return
address, function parameters,
return values, local variables.

message()

message()

message()

message()

message()

message()

message()

message()

message()

message()

message()

message()

message()

main()

messag
e()

mess
age

()mes
sag

e()

Recursion (with a Limit)
#include <iostream>

using namespace std;

void message(int times)

{

if(times > 0)

{

cout << “I’ve been feeling somewhat repetitive lately.\n”;

message(times - 1);

}

}

void main()

{

message(5);

}

Try it out

$ dbx recur_times

(dbx) trace in message

(dbx) run

$ recur_times

I've been feeling somewhat repetitive lately.

I've been feeling somewhat repetitive lately.

I've been feeling somewhat repetitive lately.

I've been feeling somewhat repetitive lately.

I've been feeling somewhat repetitive lately.

How many times does it run?

Recursion (with a Limit and Home Grown Trace Options)

#include <iostream>
using namespace std;

void message(int times)
{

cout << “message() is called with times = “ << times << endl;
if(times > 0)
{

cout << “I’ve been feeling somewhat repetitive lately.\n”;
message(times - 1);

}
cout << “message() returns with times = “ << times << endl;

}

void main()
{

message(5);
}

What is the Output?

What is the Output?

$./recur_times_trace
message() is called with times = 5
I've been feeling somewhat repetitive lately.
message() is called with times = 4
I've been feeling somewhat repetitive lately.
message() is called with times = 3
I've been feeling somewhat repetitive lately.
message() is called with times = 2
I've been feeling somewhat repetitive lately.
message() is called with times = 1
I've been feeling somewhat repetitive lately.
message() is called with times = 0
message() returns with times = 0
message() returns with times = 1
message() returns with times = 2
message() returns with times = 3
message() returns with times = 4
message() returns with times = 5

What is the Output?

$./recur_times_trace
message() is called with times = 5
I've been feeling somewhat repetitive lately.
message() is called with times = 4
I've been feeling somewhat repetitive lately.
message() is called with times = 3
I've been feeling somewhat repetitive lately.
message() is called with times = 2
I've been feeling somewhat repetitive lately.
message() is called with times = 1
I've been feeling somewhat repetitive lately.
message() is called with times = 0
message() returns with times = 0
message() returns with times = 1
message() returns with times = 2
message() returns with times = 3
message() returns with times = 4
message() returns with times = 5

How many variables
named times exist?

There are 6 variables named times (all local variables)

First Call
of

message()
times = 5

Second Call
of

message()
times = 4

Third Call
of

message()
times = 3

Fourth Call
of

message()
times = 2

Fifth Call
of

message()
times = 1

Sixth Call
of

message()
times = 0

These local variables help track progress of
the recursion.

Solving Problems

Recursion can solve a problem if it can be broken down into
successive smaller problems that are identical to the overall problem.

Sierpinski carpet
(a plane fractal)
can be drawn
and defined
recursively.

Solving Problems with Recursion

1. Any problem that can be solved recursively can be solved
iteratively with a loop.

2. Recursive functions incur a lot of overhead - the time, and the
space necessary to store the return address, local variables, and
parameters on the Call Stack. (Thus, they are not always desirable
solutions). There are ways to optimize recursion (i.e. Tail Recursion).

3. Recursion is fundamental to many functional programming
languages: Lisp, Scheme... (C and what you use of C++ now is
Procedural)

Breaking a Problem Down into a Recursive Function

Recursive Functions are broken down to two parts:

1. Base Case: one case where the problem can be solved without a
recursive call.

2. Recursive Case: reduce the problem down into smaller similar
problems.

Those of you studying Discrete Mathematics :

Recursion Problem Solving is analogous to an Inductive Proof and it’s
two parts: 1. the Base Step and 2. the Inductive Step

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

n n!
0 1
1 1
2 1 X 2 = 2
3 1 X 2 X 3 = 6
4 1 X 2 X 3 X 4 = 24
5 1 X 2 X 3 X 4 X 5 = 120
6 1 X 2 X 3 X 4 X 5 X 6 = 720
7 1 X 2 X 3 X 4 X 5 X 6 X 7 = 5,040

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

Define factorial n! as a function factorial(n)

• If n = 0 then factorial(n) = 1

• If n > 0 then factorial(n) = 1 X 2 X 3 X X n -1 X n

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

Define factorial n! as a function factorial(n)

• If n = 0 then factorial(n) = 1

• If n > 0 then factorial(n) = 1 X 2 X 3 X X n -1 X n

What is another way of writing this?

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

Define factorial n! as a function factorial(n)

• If n = 0 then factorial(n) = 1

• If n > 0 then factorial(n) = 1 X 2 X 3 X X n -1 X n

factorial(n - 1) !!!!

First rule solves the problem without recursion:

• If n = 0 then factorial(n) = 1

Second rule can be broken

• If n > 0 then factorial(n) = factorial(n - 1) X n

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

Define factorial n! as a function factorial(n)

• If n = 0 then factorial(n) = 1

• If n > 0 then factorial(n) = 1 X 2 X 3 X X n -1 X n

First rule solves the problem without recursion:

• If n = 0 then factorial(n) = 1

Second rule can be broken

• If n > 0 then factorial(n) = factorial(n - 1) X n

Example: Factorials

A factorial of an non-negative number n is defined with these rules:

• If n = 0 then n! = 1

• If n > 0 then n! = 1 X 2 X 3 X X n - 1 X n

Define factorial n! as a function factorial(n)

• If n = 0 then factorial(n) = 1

• If n > 0 then factorial(n) = 1 X 2 X 3 X X n -1 X n

BASE CASE

RECURSIVE CASE

Translated into C++ Code

int factorial (int n)

{

if(n == 0)

return 1; // BASE CASE

else

return factorial(n - 1) * n; // RECURSIVE CASE

}

$ factorial

Another Example: Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

How is this series generated?

Another Example: Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

A number in the Fibonacci Sequence is defined
as the sum of the previous two numbers.

2 + 3 = 5

Another Example: Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

Mathematically Defined:

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = ?

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2)

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0) = 1 + 0 = 1
F(1) = 1
F(0) = 0

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2)
F(3) = F(2) + F(1) = 1 + 1 = 2
F(2) = F(1) + F(0) = 1 + 0 = 1
F(1) = 1
F(0) = 0

Another Example: Fibonacci Sequence

n 0 1 2 3 4 5 6 7
F(n) 0 1 1 2 3 5 8 13

F(4) = F(3) + F(2) = 2 + 1 = 3
F(3) = F(2) + F(1) = 1 + 1 = 2
F(2) = F(1) + F(0) = 1 + 0 = 1
F(1) = 1
F(0) = 0

Write a recursive Fibonacci Function!

int fib(int n)

{

}

Write a recursive Fibonacci Function!

int fib(int n)

{

 if(n <= 0)

 return 0; // BASE CASE

 else if(n == 1)

 return 1; // BASE CASE

 else

 return fib(n-1) + fib(n-2); // RECURSIVE CASE

}

Convert the Binary Search into a Recursive Solution

int binarySearch(int array[], int numelems, int value)
{
 int first = 0, // First array element
 last = numelems - 1, // Last array element
 middle, // Mid point of search
 position = -1; // Position of search value
 bool found = false; // Flag

 while (!found && first <= last)
 {
 middle = (first + last) / 2; // Calculate mid point
 if (array[middle] == value) // If value is found at mid
 {
 found = true;
 position = middle;
 }
 else if (array[middle] > value) // If value is in lower half
 last = middle - 1;
 else
 first = middle + 1; // If value is in upper half
 }
 return position;
}

Binary Search for number ‘6’

1 2 3 4 5 6 7 8 9 10

start

upperlower

1 2 3 4 5 6 7 8 9 10

upperlower

1 2 3 4 5 6 7 8 9 10

ul

middle

1 2 3 4 5 6 7 8 9 10

ul

1 2 3 4 5 6 7 8 9 10

u
middle

1 2 3 4 5 6 7 8 9 10

Success: Found “6”

1.

2.

3.

Summary

Recursive Functions

Elegant implementations - does not always run elegantly.

Solutions comprise of

• BASE Case(s)

• RECURSIVE Case(s)

Factorials, Fibonacci Sequence, and Binary Search...

READINGS: 19.1 - 19.4, 19.6, and 19.8 - 19.10

