
String Class / File IO
CIS 15 : Spring 2007

Functionalia

Office Hours (Last Change!) - Location Moved to 0317 N
(Bridges Room)

Get Started HW 2 due on Sunday March 11,
11:59pm

Note: Midterm is on MONDAY, March 12th

Today:

• Command Line Args

• Wrap up String Class

• Begin File IO

Command Line Arguments

Remember in UNIX you can specify your behavior of running a program
by supplying the UNIX command with command line arguments.

$ ls -l

-l is one command line argument

$ who am I

am I are two command line argument

$ g++ source.cpp -o bubba.exe

How many command line arguments are there?

Command Line Arguments

Remember in UNIX you can specify your behavior of running a program
by supplying the UNIX command with command line arguments.

$ g++ source.cpp -o bubba.exe

Three?

Well, actually 4! The name of the program counts as a
command line arguement:

1 2 3

How can we make our programs react to
command line arguments?

0

It happens in main()...

We are accustomed to specifying main in the follow fashion:

int main(); or int main(void); (for those who are picky)

However, in C++ one can specify functions with a different number
and types of parameters and return types!

(called Function/Operator Overloading)

Thus, another way of specifying main is:

int main(int argc, char * argv[]);

Argument Count
counts the number of arguments

Argument Vector
contains the arguments as strings

Try it out...

int main(int argc, char * argv[])
{
 for(int i = i; i < argc; i++)
 cout << argv[i] << " ";

 cout << endl;

 return 0;
}

... in UNIX ...

$ g++ mycode.cpp -o mirror

$ mirror hey

mirror hey

$ mirror hey quit making fun of me

mirror hey quit making fun of me

Error checking...
A common way to do quick error checking and behavior branching is to
check the argument count.

If there are not enough arguments, respond with a help message.

int main(int argc, char * argv[])
{
 if(argc > 2)
 {
 cout << "Error! Usage:" << endl << argv[0] << " <filename>" << endl;
 return -1;
 }
 return 0;

}

...

$ awesome cool.txt neato.txt

Error! Usage:

awesome <filename>

$

Time Comparison

For HW 2, Part2 - Do a Time Comparison for the Selection Sort and the
QuickSort Algorithms discussed in class. In order to do that you need
to:

1. Use the UNIX utility time.

2. Make your Selection Sort Program and your QuickSort Program be
able to take input on the command line.

time Utility

It’s very simple.

$ time ls -l

...

real 0m0.006s
user 0m0.001s
sys 0m0.004s

$ time selectionsort ABC123231abcaba123

...

real 0m0.006s
user 0m0.001s
sys 0m0.004s

Make sure that you are NOT in the tcsh shell. (ksh is default)

time Utility

It’s very simple.

$ time ls -l

...

real 0m0.006s
user 0m0.001s
sys 0m0.004s

$ time selectionsort ABC123231abcaba123

...

real 0m0.006s
user 0m0.001s
sys 0m0.004s

Make sure that you are NOT in the tcsh shell. (ksh is default)

time Utility

Run 10 different input strings of varying sizes (10 to 200 characters)

(Of course run the same input in both programs!)

$ time selectionsort ABC123231abcaba123

NOTE: Some characters in our input string may be incorrect! (Which
characters are those?)

In the comments in your HW, include your results as a little table:

/*

Test Case 1: ajdn0238hiubdf HH90b0972DBuYBD0872G08B

Test Case 2: 9809Yoiwug78Yd0n78INPHf97B087B088070897bIHUSNIH

Test Number Selection Sort Time QSort Time

1 0.0020 sec 0.0032 sec

2 0.0020 sec 0.0032 sec

...
Conclusion: Selection Sort worked best.
*/

And now strncat
void strncat(char dest[], char src[], int n)
{
 int dest_i = 0;

 for(; dest[dest_i] != '\0'; dest_i++)
 { }

 for(int src_i = 0; src_i < n; src_i++, dest_i++)
 dest[dest_i] = src[src_i];

}

....

char wow[10] = "wow";
char wee[10] = "weee";

cout << wow << endl << wee << endl << endl;

mystrncat(wow, wee, strlen(wee) + 1);

cout << wow << endl << wee << endl;
..............

strncat

....

char wow[10] = "wow";
char wee[10] = "weee";

cout << wow << endl << wee << endl << endl;

mystrncat(wow, wee, strlen(wee) + 1);

cout << wow << endl << wee << endl;

..............

wow
weee

wowweee
weee

String Numbers Conversions

char number1[10] = “45387”;

char number2[10] = “3.14”;

char number3[10];

number3 = number1 + number2;

cout << number3 << endl;

Problem?

String Numbers Conversions

char number1[10] = “45387”;

char number2[10] = “3.14”;

char number3[10];

number3 = number1 + number2;

cout << number3 << endl;

Problem?

Can’t “+” char [].

cstdlib

#include <cstdlib>

int num;

long bigNum;

double realNum;

float smallerRealNum;

num = atoi(“42”);

bigNum = atol(“8002566205”);

realNum = atof(“12.667”);

smallerRealNum = atof(“1.1”);

Which is Larger / More Precision?

cstdlib

#include <cstdlib>

int num;

long bigNum;

double realNum;

float smallerRealNum;

num = atoi(“42”);

bigNum = atol(“8002566205”);

realNum = atof(“12.667”);

smallerRealNum = atof(“1.1”);

long larger than int

double more precision than float

Number String Conversion

char * itoa(int value, char * output, int base);

Converts the value to a string (output) with the
appropriate base.

Base: decimal = 10, octal = 8, hexadecimal = 16.

char myString[10];

int value = 256;

itoa(value, myString, 16);

cout << myString << endl;

...

0x00000100

Output and
availability depends

on compiler

C++ String Class

#include <string>

Probably what you have been using in CIS 1.5

Allows one to work with strings as a data type. (Like int, and char)

Unlike int and char, string is an abstract data type.

Defined as a class (i.e. an object).

(That means, it’s defined in a library somewhere - as opposed to being a
native data type.)

Advantages:

Easier of use

Dynamic in Size

Dis-Advantages:

Differing Implementation

Overhead! (Depends on how light-weight of an implementation you
want)

Reading and Writing to the String Class
string name;

name = “anonymous”;

cin >> name;

cout << “Your name is: “ << name << endl;

...
Hi My Name is Chipp.

Your name is: Hi
...

cin reads only up to the first white-space.

getline(cin, name);

Reads a line of text (including white-spaces)
...

Hi My Name is Chipp.

Your name is: Hi My Name is Chipp.

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”);

string copyOf(myName);

string nickName(copyOf, 3);

string snore(‘z’, 10);

string lastName(myName, 7, 6);

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName);

string nickName(copyOf, 3);

string snore(‘z’, 10);

string lastName(myName, 7, 6);

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3);

string snore(‘z’, 10);

string lastName(myName, 7, 6);

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3); // “Chi”

string snore(‘z’, 10);

string lastName(myName, 7, 6);

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3); // “Chi”

string snore(‘z’, 10); // “zzzzzzzzzz”

string lastName(myName, 7, 6);

Initializing string

Because string is a class object, it is initialized using a
constructor.

(A special function that is called when an object in C++ is
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3); // “Chi”

string snore(‘z’, 10); // “zzzzzzzzzz”

string lastName(myName, 7, 6); // “Jansen”

Comparing and Sorting strings

Instances of the string class can be compared (much like int
and char) using : <, >, <=, >=, ==, !=

string abc(“abc”), def(“def”), abcd(“abcd”), num(“123”), upper
(“ABC”);

if(abc < def)

cout << “abc comes before def” << endl;

if(abc < abcd)

cout << “abc is shorter and thus comes before abcd” << endl;

if(abc > num)

cout << “12345 is before a” << endl;

if(abc != ABC)

cout << “Compare is case sensitive” << endl;

 Concatenating and Referencing

String objects can be concatenated or appended with the + and
the += operator.

string abba(“abba”);

string cadabba(“cadabba”);

string magic;

magic = abba + cadabba;

cout << magic << endl;

magic += cadabba;

cout << magic << endl;

magic += cadabba += abba;

cout << magic << endl << cadabba << endl << abba << endl;

 Concatenating and Referencing

String objects can be concatenated or appended with the + and
the += operator.

string abba(“abba”);

string cadabba(“cadabba”);

string magic;

magic = abba + cadabba;

cout << magic << endl;

magic += cadabba;

cout << magic << endl;

magic += cadabba += abba;

cout << magic << endl << cadabba << endl << abba << endl;

abbacadabba
abbacadabbacadabba
abbacadabbacadabbacadabba
abba
cadabbaabba
abba

Menu of Member Functions

The string object has a large set of functions associated to it.

Since string is a class, these functions are accessed as member functions.

One accesses member functions through dot notation.

string chipp(“chipp”);

string chippsPasswd(“right”);

cout << chipp.length << endl;

chippsPassword.append(“on”);

cout << chippsPassword << endl;

chipp.swap(chippsPasswd);

cout << “login: “ << chipp << endl;

cout << “passwd: “ << chippsPasswd << endl;

Menu of Member Functions

The string object has a large set of functions associated to it (Ch 10.7)

Since string is a class, these functions are accessed as member functions.

One accesses member functions through dot notation.

string chipp(“chipp”);

string chippsPasswd(“right”);

cout << chipp.length << endl;

chippsPassword.append(“on”);

cout << chippsPassword << endl;

chipp.swap(chippsPasswd);

cout << “login: “ << chipp << endl;

cout << “passwd: “ << chippsPasswd << endl;

5
righton
login: righton
passwd: chipp

Files.

A necessary hurdle...
... or reinventing the wheel?

UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.

Source Files, Executable Programs, Devices, Processes...

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr-- 1 chipp sys 10 Feb 27 22:53 AllMySecrets.txt

File Permissions: read, write, exectute, (- no permission)

UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.

Source Files, Executable Programs, Devices, Processes...

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr-- 1 chipp sys 10 Feb 27 22:53 AllMySecrets.txt

Defined in this order: user, group, others.

{ { {

u g o

UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.

Source Files, Executable Programs, Devices, Processes...

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr-- 1 chipp sys 10 Feb 27 22:53 AllMySecrets.txt

You must have Read and/or Write Permission to access or modify a file.

How do you change these permissions? Read up on chmod

UNIX File System

File Systems (Disk):
FAT
NTFS
HFS
HFS+
ext2
ext3
journaling file systems

Windows

Apple

Linux/UNIX

UNIX File System
UNIX: Files are stored as inodes.
$ ls -i <filename>
Data and Directories are stored in blocks.
Where is the filename stored?

Review: Accessing a File in C++

Reading from a File

#include <fstream>

...

ifstream lottery;

int numbers[7];

lottery.open(“lotterynumbers.txt”);

for(int i = 0; i < 7; i++)

lottery >> numbers[i];

lottery.close();

Review: Accessing a File in C++

Writing to a File.

#include <fstream>

...

ofstream lottery;

int numbers[7] = {7,6,7,7,5,0,6};

lottery.open(“lotterynumbers.txt”);

for(int i = 0; i < 7; i++)

lottery << numbers[i];

lottery.close();

Review: Accessing a File in C++

#include <fstream>

...

ifstream lottery;

int numbers[7];

lottery.open(“lotterynumbers.txt”);

if(lottery.fail())

cout << “Error opening file” << endl;

else

{

for(int i = 0; i < 7; i++)

lottery >> numbers[i];

lottery.close();

}

Error Checking on a file opening.

Review: Accessing a File in C++

#include <fstream>

...

ifstream lottery;

int numbers[7];

int i;

lottery.open(“lotterynumbers.txt”);

i = 0;

while(lottery >> numbers[i])

i++;

lottery.close();

Reading until the end of the file (EOF)

What’s the danger here?

Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::out);

myFile << “Writing out!”;
File Access Flags

Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::in);

int code;

myFile >> code;

File Access Flag

Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::in | ios::out);

int code;

myFile >> code;

code++;

myFile << code;
File Access Flags

File Access Flag(s) Behavior

ios::out Data written out. Existing file is deleted (by
default). No file results in creation.

ios::in Data read. No file results in error.

ios::in | ios::out Read/Write. File preserved. No file results in creation.

ios::out | ios::app Append. Go to the end of file, start writing.
No file results in creation.

More?

Read Chapter 12.

