
String Class / File IO
CIS 15 : Spring 2007



Functionalia

Office Hours (Last Change!) - Location Moved to 0317 N 
(Bridges Room)

Get Started HW 2 due on Sunday March 11, 
11:59pm

Note: Midterm is on MONDAY, March 12th

Today:

• Command Line Args

• Wrap up String Class

• Begin File IO



Command Line Arguments

Remember in UNIX you can specify your behavior of running a program 
by supplying the UNIX command with command line arguments.

$ ls -l

-l is one command line argument

$ who am I

am I are two command line argument

$ g++ source.cpp -o bubba.exe

How many command line arguments are there? 



Command Line Arguments

Remember in UNIX you can specify your behavior of running a program 
by supplying the UNIX command with command line arguments.

$ g++ source.cpp -o bubba.exe

Three?

Well, actually 4!  The name of the program counts as a 
command line arguement:

1 2 3

How can we make our programs react to 
command line arguments?

0



It happens in main()...

We are accustomed to specifying main in the follow fashion:

int main(); or int main(void); (for those who are picky) 

However, in C++ one can specify functions with a different number 
and types of parameters and return types!

(called Function/Operator Overloading)

Thus, another way of specifying main is:

int main(int argc, char * argv[]);

Argument Count
counts the number of arguments

Argument Vector
contains the arguments as strings



Try it out...

int main(int argc, char * argv[])
{ 
  for(int i = i; i < argc; i++)
    cout << argv[i] << " ";
  
  cout << endl;

  return 0;
}

... in UNIX ...

$ g++ mycode.cpp -o mirror

$ mirror hey

mirror hey

$ mirror hey quit making fun of me

mirror hey quit making fun of me



Error checking...
A common way to do quick error checking and behavior branching is to 
check the argument count.

If there are not enough arguments, respond with a help message.

int main(int argc, char * argv[])
{ 
  if(argc > 2)  
  {
    cout << "Error! Usage:" << endl << argv[0] << " <filename>" << endl;
    return -1;
  }
  return 0;

}

...

$ awesome cool.txt neato.txt

Error! Usage:

awesome <filename>

$



Time Comparison

For HW 2, Part2 - Do a Time Comparison for the Selection Sort and the 
QuickSort Algorithms discussed in class.  In order to do that you need 
to:

1. Use the UNIX utility time.

2. Make your Selection Sort Program and your QuickSort Program be 
able to take input on the command line.



time Utility

It’s very simple. 

$ time ls -l

...

real    0m0.006s
user    0m0.001s
sys     0m0.004s

$ time selectionsort ABC123231abcaba123

...

real    0m0.006s
user    0m0.001s
sys     0m0.004s

Make sure that you are NOT in the tcsh shell.  (ksh is default)
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time Utility

Run 10 different input strings of varying sizes (10 to 200 characters)

(Of course run the same input in both programs!)

$ time selectionsort ABC123231abcaba123

NOTE: Some characters in our input string may be incorrect!  ( Which 
characters are those?)

In the comments in your HW, include your results as a little table:

/*

Test Case 1: ajdn0238hiubdf HH90b0972DBuYBD0872G08B

Test Case 2: 9809Yoiwug78Yd0n78INPHf97B087B088070897bIHUSNIH

Test Number            Selection Sort Time                 QSort Time

1                      0.0020 sec                          0.0032 sec

2                      0.0020 sec                          0.0032 sec

...
Conclusion: Selection Sort worked best. 
*/



And now strncat
void strncat(char dest[], char src[], int n)
{
  int dest_i  = 0;

  for(; dest[dest_i] != '\0'; dest_i++)
  { }

  for(int src_i = 0; src_i < n; src_i++, dest_i++)
    dest[dest_i] = src[src_i];

}

....

char wow[10] = "wow";
char wee[10] = "weee";

cout << wow << endl << wee << endl << endl;

mystrncat(wow, wee, strlen(wee) + 1);

cout << wow << endl << wee << endl;
..............



strncat

....

char wow[10] = "wow";
char wee[10] = "weee";

cout << wow << endl << wee << endl << endl;

mystrncat(wow, wee, strlen(wee) + 1);

cout << wow << endl << wee << endl;

..............

wow
weee

wowweee
weee



String          Numbers Conversions

char number1[10] = “45387”;

char number2[10] = “3.14”;

char number3[10];

number3 = number1 + number2;

cout << number3 << endl;

Problem?



String          Numbers Conversions

char number1[10] = “45387”;

char number2[10] = “3.14”;

char number3[10];

number3 = number1 + number2;

cout << number3 << endl;

Problem?

Can’t “+” char [].



cstdlib

#include <cstdlib>

int num;

long bigNum;

double realNum;

float smallerRealNum;

num = atoi(“42”);

bigNum = atol(“8002566205”);

realNum = atof(“12.667”);

smallerRealNum = atof(“1.1”);

Which is Larger / More Precision?



cstdlib

#include <cstdlib>

int num;

long bigNum;

double realNum;

float smallerRealNum;

num = atoi(“42”);

bigNum = atol(“8002566205”);

realNum = atof(“12.667”);

smallerRealNum = atof(“1.1”);

long larger than int

double more precision than float



Number       String Conversion

char * itoa(int value, char * output, int base);

Converts the value to a string (output) with the 
appropriate base.

Base: decimal = 10, octal = 8, hexadecimal = 16.

char myString[10];

int value = 256;

itoa(value, myString, 16);

cout << myString << endl;

...

0x00000100

Output and 
availability depends 

on compiler



C++ String Class

#include <string>

Probably what you have been using in CIS 1.5

Allows one to work with strings as a data type.  (Like int, and char)

Unlike int and char,  string is an abstract data type.  

Defined as a class (i.e. an object).

(That means, it’s defined in a library somewhere - as opposed to being a 
native data type.)

Advantages:

Easier of use

Dynamic in Size

Dis-Advantages:

Differing Implementation

Overhead! (Depends on how light-weight of an implementation you 
want)



Reading and Writing to the String Class
string name;

name = “anonymous”;

cin >> name;

cout << “Your name is: “ << name << endl;

...
Hi My Name is Chipp.

Your name is: Hi
...

cin reads only up to the first white-space.

getline(cin, name); 

Reads a line of text (including white-spaces)
...

Hi My Name is Chipp.

Your name is: Hi My Name is Chipp.



Initializing string

Because string is a class object, it is initialized using a 
constructor.  

(A special function that is called when an object in C++ is 
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”);

string copyOf(myName);

string nickName(copyOf, 3);

string snore(‘z’, 10);

string lastName(myName, 7, 6);
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Initializing string

Because string is a class object, it is initialized using a 
constructor.  
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Initializing string

Because string is a class object, it is initialized using a 
constructor.  

(A special function that is called when an object in C++ is 
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string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3); // “Chi”

string snore(‘z’, 10); // “zzzzzzzzzz”

string lastName(myName, 7, 6);



Initializing string

Because string is a class object, it is initialized using a 
constructor.  

(A special function that is called when an object in C++ is 
instantiated)

string empty; // nothing special “”

string myName(“Chipp Jansen”); // “Chipp Jansen”

string copyOf(myName); // “Chipp Jansen”

string nickName(copyOf, 3); // “Chi”

string snore(‘z’, 10); // “zzzzzzzzzz”

string lastName(myName, 7, 6); // “Jansen”



Comparing and Sorting strings

Instances of the string class can be compared (much like int 
and char) using : <, >, <=, >=, ==, !=

string abc(“abc”), def(“def”), abcd(“abcd”), num(“123”), upper
(“ABC”);

if(abc < def)

cout << “abc comes before def” << endl;

if(abc < abcd)

cout << “abc is shorter and thus comes before abcd” << endl;

if(abc > num)

cout << “12345 is before a” << endl;

if(abc != ABC)

cout << “Compare is case sensitive” << endl;



 Concatenating and Referencing

String objects can be concatenated or appended with the + and 
the += operator.

string abba(“abba”);

string cadabba(“cadabba”);

string magic;

magic = abba + cadabba;

cout << magic << endl;

magic += cadabba;

cout << magic << endl;

magic  += cadabba += abba;

cout << magic << endl << cadabba << endl << abba << endl;



 Concatenating and Referencing

String objects can be concatenated or appended with the + and 
the += operator.

string abba(“abba”);

string cadabba(“cadabba”);

string magic;

magic = abba + cadabba;

cout << magic << endl;

magic += cadabba;

cout << magic << endl;

magic  += cadabba += abba;

cout << magic << endl << cadabba << endl << abba << endl;

abbacadabba
abbacadabbacadabba
abbacadabbacadabbacadabba
abba
cadabbaabba
abba



Menu of Member Functions

The string object has a large set of functions associated to it. 

Since string is a class, these functions are accessed as member functions.

One accesses member functions through dot notation.

string chipp(“chipp”);

string chippsPasswd(“right”);

cout << chipp.length << endl;

chippsPassword.append(“on”);

cout << chippsPassword << endl;

chipp.swap(chippsPasswd);

cout << “login: “ << chipp << endl;

cout << “passwd: “ << chippsPasswd << endl;



Menu of Member Functions

The string object has a large set of functions associated to it (Ch 10.7) 

Since string is a class, these functions are accessed as member functions.

One accesses member functions through dot notation.

string chipp(“chipp”);

string chippsPasswd(“right”);

cout << chipp.length << endl;

chippsPassword.append(“on”);

cout << chippsPassword << endl;

chipp.swap(chippsPasswd);

cout << “login: “ << chipp << endl;

cout << “passwd: “ << chippsPasswd << endl;

5
righton
login: righton
passwd: chipp



Files.

A necessary hurdle...
... or reinventing the wheel?



UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.  

Source Files, Executable Programs, Devices, Processes... 

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr--   1 chipp    sys   10 Feb 27 22:53 AllMySecrets.txt

File Permissions: read, write, exectute, (- no permission)



UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.  

Source Files, Executable Programs, Devices, Processes... 

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr--   1 chipp    sys   10 Feb 27 22:53 AllMySecrets.txt

Defined in this order: user, group, others.

{ { {

u g o



UNIX File Permissions

As discussed in our UNIX tutorial, everything in UNIX is treated as a FILE.  

Source Files, Executable Programs, Devices, Processes... 

Since UNIX is a multi-user system, Files need permissions associated to them:

$ ls -l AllMySecrets.txt

-rwxr-xr--   1 chipp    sys   10 Feb 27 22:53 AllMySecrets.txt

You must have Read and/or Write Permission to access or modify a file.

How do you change these permissions? Read up on chmod



UNIX File System

File Systems (Disk):  
FAT
NTFS
HFS
HFS+
ext2
ext3
journaling file systems

Windows

Apple

Linux/UNIX



UNIX File System
UNIX: Files are stored as inodes. 
$ ls -i <filename>
Data and Directories are stored in blocks.
Where is the filename stored?



Review: Accessing a File in C++

Reading from a File

#include <fstream>

...

ifstream lottery;

int numbers[7];

lottery.open(“lotterynumbers.txt”);

for(int i = 0; i < 7; i++)

lottery >> numbers[i];

lottery.close();



Review: Accessing a File in C++

Writing to a File.

#include <fstream>

...

ofstream lottery;

int numbers[7] = {7,6,7,7,5,0,6};

lottery.open(“lotterynumbers.txt”);

for(int i = 0; i < 7; i++)

lottery << numbers[i];

lottery.close();



Review: Accessing a File in C++

#include <fstream>

...

ifstream lottery;

int numbers[7];

lottery.open(“lotterynumbers.txt”);

if(lottery.fail())

cout << “Error opening file” << endl;

else

{

for(int i = 0; i < 7; i++)

lottery >> numbers[i];

lottery.close();

}

Error Checking on a file opening.



Review: Accessing a File in C++

#include <fstream>

...

ifstream lottery;

int numbers[7];

int i;

lottery.open(“lotterynumbers.txt”);

   

i = 0;

while(lottery >> numbers[i])

i++;

lottery.close();

Reading until the end of the file (EOF)

What’s the danger here?



Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::out);

myFile << “Writing out!”;
File Access Flags



Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::in);

int code;

myFile >> code;

File Access Flag



Flexible Read/Write to Files

#include <fstream>

...

fstream myFile;

myFile.open(“journal.txt”, ios::in | ios::out);

int code;

myFile >> code;

code++;

myFile << code;
File Access Flags



File Access Flag(s) Behavior

ios::out Data written out.  Existing file is deleted (by 
default).  No file results in creation.

ios::in Data read.  No file results in error.

ios::in | ios::out Read/Write.  File preserved.  No file results in creation.

ios::out | ios::app Append.  Go to the end of file, start writing.  
No file results in creation.



More?

Read Chapter 12.


