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Functionalia

Today:    

Reinforcement Learning - Example

Genetic Algorithms / Programming

HW 1 - What happened? (2/5 return?)  - Due Wednesday 11:59pm

HW 2 Is Out - DUE SATURDAY before the MIDTERM.

Thursday - Project 1 Work-Day - will meet HERE rather than 0317N

EVENING TEA:  Next Monday, 5pm to 7pm, 0317 N



Rewards not goals

For many tasks agents don’t have short term goals, but instead accrue 
rewards over a period of time.

Instead of a plan, we want a policy     which says how the agent should 
act over time.

Typically this is expressed as what action should be carried out in a given 
state.

Express the reward an agent gets as 

We want an optimal policy      which maximizes the (discounted) reward 
at every node.

special reward for being in state nj



Finding the Optimum Policy

One (non-ideal) solution is to search through all policies (randomly) until 
a good one is discovered.

Instead, given a certain policy, one can calculate the value of a node - 
the reward an agent will get if it starts at that node and follows the 
policy.

Agent at ni and follows the policy to nj, then the agent can expect this 
reward (in the long-term):

discounting factor - adds a little long-term goal



Value Iteration

The optimum policy then gives us the action that maximizes this reward:

If we knew what the values of the nodes were under     , then we could 
easily compute the optimal policy:

The problem is that we don’t know these values.

But we can find them out using value iteration.

We start by guessing (randomly is fine) an estimated value V(n) for each 
node.



Approximating the Estimated Values
Then when we are at ni we pick the action to maximize:

that is the best thing given what we currently know.

We then update V(ni) by:

Progressive iterations of this calculation make V(n) a closer and closer 
approximation to

Intuitively this is because we replace the estimate with the actual reward 
we get for the next state (and the next state and the next state).

Having the factor 0 <     < 1  is geared towards actions with random 
effects and random awards.  (It sets the rate of approach to the optimum 
Values).  In deterministic domains, we can set     = 1. 

)+



Example Q-Learning : Simplified 
Reinforcement Learning

As an example we are going to look at Q-Learning a simplified 
version of Value Iteration.

Consider this State-Space with the actions being traversing to the next 
state.  

Except for the action of moving to state C, the cost of all actions is zero.

Being in state E yields an immediate reward of 100.
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Example Q-Learning

We can represent the State Space in a Rewards/Cost matrix, which maps 
state-action pairs to their reward/cost.  

A Reward/Cost of ‘-’ indicates that there is no edge on the State-Space 
graph between the two States.
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A B C D E

A - 0 -50 - -

B 0 - - 0 100

C 0 - - 0 -

D - 0 -50 - 100

E - 0 - 0 -

act
ion

state



Example Reinforcement Learning

We keep track of a Q-Values Matrix : Q(state, action)

...which are the Expected Values (V(ni) mentioned before) (but the 
“states” are written as state-action pairs).

A B C D E

A - 0 -50 - -

B 0 - - 0 100

C 0 - - 0 -

D - 0 -50 - 100

E - 0 - 0 -

act
ion

state A B C D E

A 0 0 0 0 0

B 0 0 0 0 0

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0

Q-Values Matrix

state

act
ion



Learning the Q-Matrix

With a Discounting factor set to 0.8 in our case.  

We will now calculate Q-values for the state by:

1. Starting in a random initial state.  

2. Choose a random action.   

3. Update the Q-value for that state:

Q(state, action) = Reward(state, action) + Discount * Max{Q(next-state, all actions}

4. Go to the appropriate state.

5. If we are not at the “GOAL” state (if there is a GOAL state) GO TO 2. 



Set Goal to E (so we have a place to stop our episode).

Randomly Select State B as our Initial State, and we’ll randomly select 
goto-E as our action.

Q(B,E) = Reward(B,E) + Discount*(Max{Q(E,B), Q(E,D)})

Q(B,E) =100 + (0.8) * (Max{0,0}) = 100

A B C D E

A - 0 -50 - -

B 0 - - 0 100

C 0 - - 0 -

D - 0 -50 - 100

E - 0 - 0 -

act
ion

state A B C D E

A 0 0 0 0 0

B 0 0 0 0 0

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0
state

act
ion

Reward Q-Matrix



We are at the GOAL E state.  Now we will start again. 

Randomly Select State A as our Initial State, and we’ll randomly select 
goto-B as our action.

Q(A,B) = Reward(A,B) + Discount*(Max{Q(B,A), Q(B,D), Q(B,E)})

Q(B,E) = 0 + (0.8) * (Max{0,0,100}) = 80

A B C D E

A - 0 -50 - -

B 0 - - 0 100

C 0 - - 0 -

D - 0 -50 - 100

E - 0 - 0 -

act
ion

state A B C D E

A 0 0 0 0 0

B 0 0 0 0 100

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0
state

act
ion

Reward Q-Matrix



Moving towards Convergence on the Q-Matrix

Now, if we did many parallel searches (i.e. starting at every node, and 
considering every action with the Initial Empty Q Matrix).

You would get this Q-matrix of values:

A B C D E

A 0 80 -50 0 0

B 0 0 0 80 100

C 0 0 80 0 0

D 0 80 -50 0 100

E 0 80 0 80 0
state

act
ion

Q-Matrix



Moving towards Convergence on the Q-Matrix

Eventually the Q-Matrix would converge to something that the now 
Learned-Agent would be able to use:

A B C D E

A - 222 128 - -

B 178 - - 222 278

C 178 - - 222 -

D - 222 128 - 278

E - 222 - 222 -

state

act
ion

Q-Matrix



Moving towards Convergence on the Q-Matrix

Eventually the Q-Matrix would converge to something that the now 
Learned-Agent would be able to use:

A B C D E

A - 222 128 - -

B 178 - - 222 278

C 178 - - 222 -

D - 222 128 - 278

E - 222 - 222 -

state

act
ion

Q-Matrix

With this Estimated 
Value Matrix of 

Current State and 
Action Pairs (Q-

Values), what sequence 
of steps would this 

agent take starting at 
state A and taking two 

steps?



Discoveries / Metaphors from Biology
Lamarck and others: 

•  Species “transmute” over time (gene’s change during organism’s lifetime)

Darwin and Wallace: 

• Consistent, heritable variation among individuals in population 

• Natural selection of the fittest 

Mendel and genetics: 

• A mechanism for inheriting traits 

• genotype          phenotype mapping 

Watson and Crick: 

• Information strings!  (DNA)

Nature is good at evolving robust agents.  

Can we borrow such mechanisms to build artificial agents?

• We will look at two models:

– Genetic algorithms

– Genetic programming 



RL Additional Resources

Reinforcement Learning Examples

TD-Gammon: A very successful program that can play BackGammon.  
Agent begins knowing nothing about BackGammon and plays 2 million 
games.  (Reaches a draw against humans)

Elevator Scheduling: Large skyscraper Elevator Scheduling is a 
complex problem.  Through simulation on the input (all buttons pressed 
and where the elevators currently are), an agent can maximize the 
throughput of people through the system.  (Better than FSM controls)

Additional Resources

If you are interested in more Reinforcement Learning, a Paper is online 
(accessible from the syllabus section).

Q-Learning example is based on a Reinforcement Learning Tutorial:

http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/index.html

http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/index.html
http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/index.html


Genetic algorithms

genetic-algorithm(population,fitness)

{

repeat

{

parents := selection(population,fitness)

population := reproduction(parents)

}

until(enough fit individuals)

return(fittest individual)

}



Genetic Algorithms As Search

This is *just* a fancy way of doing search.

• We code some part of the agent (e.g. action selection function) and 
decide how to do:

• selection

• reproduction.

• When we have a bunch of individuals (as we typically do), each 
individual represents a state in the state-space of possible individuals.

• Establishing and evaluating a population is a (massively) parallel search 
though this space.



Components of the Genetic Algorithm

• To use the approach we have to instantiate:

• What is the fitness function?

• How is an individual represented?

• How are individuals selected?

• How do individuals reproduce?

• While these are to some extent domain dependent, we will look at 
some typical ways of doing this.



Fitness function

• The fitness function is the most domain dependent item.

• It is a function that takes an individual as an argument and returns a 
real number.

• In the example of our wall following robot a function could be:

• The average number of moves out of n for which the robot makes 
the right action selection.

• The average number of moves out of n for which the robot is 
adjacent to the boundary.

• Fitness functions often take time to evaluate.  (i.e. Our robot would 
have to run a trial to see how it behaves)



Representation

• The classic representation is one in which features are coded as a 
binary “chromosome”.

(i.e. we code a sequence like 01110110 rather than AATGTCAT.)

• In our robot example, we could code up the action representation as a 
list of condition/action pairs:

• One possible combination of sensor readings (followed by)

• The appropriate action.

• Sensor readings could be 

strings n, ne, . . . , nw.

• Actions could be two digit binary numbers, 00 = north etc.



Selection

• Selection is usually a two stage process.

• First we limit the population:

• Cull unfit individuals to limit the population size.

• Then we select individuals to breed:

• Random selection weighted towards fit individuals;

• With replacement (so very fit individuals can breed several times).



Reproduction

• Two basic parts to reproduction:

• Crossover

• Mutation.

• First take two parents P1 and P2, and pick a number n between 1 and 
N = length of “chromosome”.

• Create two “children”, C1 and C2.

• C1 is the first n bits of P1 and the last N - n bits of P2.

• C2 is the first n bits of P2 and the last N - n bits of P1.



Crossover and Mutation

• Cross-over is analogous to state-space transitions in state-space 
search.

• Taking fit individuals and combining their features is a form of best-first 
search.

• It makes small “hill climbing” steps up the fitness function.

• However it can get stuck in local maxima.

• Mutation is a way of “jumping” to new areas of search space.

• We “mutate” random bits by flipping them.



The Art of Genetic Algorithms

• Again we have a lot of possible parameters to play with:

• Fitness rating;

• Selection probability;

• Mutation rate;

• Crossover point;

• etc.

0000001101

0101010010

1111111000

1010100111

0000001101

0101010010

0101010010

1111111000

1000001101

0101010010

0101111000

1111010010
Differential

Population at Tn

F

F

F

(0000001101) = 0.000

(0101010010) = 0.103

(1111111000) = 0.030

F (1010100111) = ! 0.277

Population at Tn+1

Mutation

Crossover

Reproduction



Genetic programming

• Genetic algorithms only allow us to evolve some part of 
the agent program.

• We need to code up the “chromosome” and decode to 
get the agent itself.

• However, we can do evolution on more complex 
objects.

• In genetic programming we do evolution on programs 
themselves.



• We can’t get completely away from some representation:

• However, in a suitable language (Lisp) we can execute such functions 
directly:

(+ 3 (/ (x 5 4) 7))



Other languages will need a little translation.

Let’s look at how GP can be used to evolve the wall following robot.



• We build the program up from four primitive functions:

1. AND(x, y) = 0 if x = 0; else y

2. OR(x, y) = 1 if x = 1; else y

3. NOT(x) = 0 if x = 1; else 1

4. IF(x, y, z) = y if x = 1; else z

and four actions:

1. north move one cell up the grid

2. east move one cell right in the grid

3. south move one cell down the grid

4. west move one cell left the grid



Note

We must ensure that all expressions and sub-expressions have values for 
all possible arguments, or terminate the program.

This ensures that any tree constructed so a function is correctly formed 
will be an executable program.

Even if the program is executable, it may not produce “sensible” output.

It may divide by zero, or generate a negative number where only a 
positive number makes sense (as when setting a price).

So we always need to have some kind of error handling to deal with the 
output of individual programs..



• To give us an idea of what we are looking for, the following slide gives an example 
program in the GP tree-format.

• This program (check it) implements the same wall following program that we looked at in 
the “stimulus response” lecture.



Fitness

• The basic way we do GP is like GA.

• What kind of fitness function could we use for the boundary follower?



Fitness

• The basic way we do GP is like GA.

• What kind of fitness function could we use for the boundary follower?

Example Fitness Function:

1. Run the Program 60 steps, count the 
number of boundary cells that are visited.  
(32 would be the highest)

2. Do 10 trials, each starting in a random 
spot.

3.  320 is the Highest Possible Fitness (a 
boundary-follower that always visits all 32 
boundary cells).  0 is the worst possible 
fitness.



• Do selection of the most fit (top 10% of the batch)

• Breed them (90% of the next generation are the children)

• But how do we breed programs?

Reproduction



A randomly selected subtree from the father replaces a randomly 
selected subtree from the mother.

Reproduction



Running the first trial

• The GP-format is somewhat clumsy.

(IF (AND (OR (n) (ne)) (NOT (e)))
(east)
(IF (AND (OR (e) (se)) (NOT (s)))

(south)
(IF (AND (OR (s) (sw)) (NOT (w)))
(west)
(north))))

• However, as we shall see, this program is relatively compact when 
compared with the programs that will be generated by GP.

• We begin to select from 5000 programs in the first batch.



Tournament Selection

• Then we need to breed by tournament selection:

Take 500 (10%) fittest programs and add them to the next 
generation.

Pick 7 (<1%) programs at random and add them to the next 
generation.

• Reproduction:  Then create 4500 (90%) children into the next 
generation—parents chosen by tournament selection 

(Children Program’s subject to basic syntax check).

• Mutation: Subject a sparse number (~1%) of members from the 
resultant generation to a mutation operation:

1. Delete a randomly selected subtree.  

2. Replacing a randomly chosen subtree with a random subtree.



Generation 0

The most fit member of the randomly generated initial programs has a 
fitness of 92, and has the kind of behavior shown below.

Here is the resulting program 



Fittest Program

Not so 
optimal.



Generation 2

The most fit member of generation 2 has fitness 117.



Generation 6

The most fit member of generation 6 has fitness 163.

The program follows the wall perfectly, but gets stuck in the bottom 
right-hand corner.



the best program from Generation 6:



Generation 10

The most fit member of generation 10 has fitness of close to the 
maximum 320.

The program follows the wall perfectly, heading south until it reaches the 
boundary.



the best program from Generation 10



Graph

This graph shows how the fitness of individuals grows quite sharply over 
the ten generations.



Genetic Algorithms for Problem Solving

GA/GP is a stochastic process and arrive at an optimized solution.

(Mutation/Crossover - simulated annealing in system’s engineering)

Best suited for those tasks which cannot be solved through analytical 
means, or problems where efficient ways of solving them have not been 
found (Heitkoetter, Joerg and Beasley, Daveid, 1995)

Successful Case Studies:

Timetabling: University of Edinburgh, scheduling for student’s exams.  
Its fitness function take all of the student’s schedules and rates the 
fitness of the current exam timetable. (Abramson & Abela 1991)

Scientific Design: Design a turbine blade.  The many design factors of 
a blade - shape, thickness, and it’s twist make up the “chromosome”. 
(Taubes, 1997).



... more Genetic Algorithms for Problem Solving

Music Composition: Bruce L Jacob (University of Michigan), 3 
modules utilizing Genetic Algorithms.

Chromosomes assigned by creator’s tastes.

Output is Scored Music : ultimately performed by humans.
 

COMPOSER EAR

ARRANGER

“motives”

tonal phrases

HUMAN
scores

feedback



FPGA - Field Programmable Gate Arrays (“soft” logic hardware)

Adrian Thompson (University of Sussex, UK) - evolved configurations of 
logic gates.  Created audio “discriminator” circuit:

Idea is to build evolutionary robust hardware logic (self-healing)

Hardware Evolution



Summary

• This lecture has introduced evolutionary computing techniques.

• These are techniques in which (parts of) agents evolve.

• We looked at two techniques:

– Genetic algorithms

– Genetic programming

• Note that evolutionary techniques are sometimes taken to include 
neural networks.

• Genetic algorithms and genetic programming give us a way to learn in 
an unsupervised way.


