Propositional Logic

Building Blocks for Rational Thinking

CIS 32

Functionalia

Project | Demo: Monday
Project | Deliverables: Next Thursday
Write-Up Ciriteria
ZIPPED Code (either in e-mail, or on USB Key in class)

Knowledge Representation - Write One Page summary on your
Role (it will be due in HWV 3)

Today:
Project | Code Changes

Midterm Review

Propositional Logic

Why Logic!?

* “Weak” (search-based) problem-solving does not scale to real
problems.

* To succeed, problem solving needs domain specific knowledge.
* In search, knowledge = heuristic.
* We need to be able to represent knowledge efficiently.

* W3C - Web Consortium is developing a Logic Based Web-Service
Descriptiors

(FLOWS - First-order Logic Ontology for Web-Services)

* One way to do this is to use logic.

What is Logic?

* When most people say “logic”, they mean either propositional logic or
first-order predicate logic.

* However, the precise definition is quite broad, and literally hundreds of
types of logics have been studied by philosophers, computer scientists
and mathematicians.

* Any “formal system” can be considered a logic if it has:
— a well-defined syntax;
— a well-defined semantics; and

— a well-defined proof-theory.

Components of Logic

* The syntax of a logic defines the syntactically acceptable objects of the
language.

Properly called well-formed formulae (WFf). (We shall just call them
formulae.)

* The semantics of a logic associate each formula with a meaning.

* The proof theory is concerned with manipulating formulae according
to certain rules.

Propositional Logic

* The simplest, and most abstract, logic we can study is called propositional
logic.

* Definition: A proposition is a statement that can be either true or
false; it must be one or the other, and it cannot be both.

* EXAMPLES. The following are propositions:
— the reactor is on;
— the wing-flaps are up;
— It is raining outside.

whereas the following are not:

— are you going out somewhere!

—2+3

Propositional Logic

* It is possible to determine whether any given statement is a
proposition by prefixing it with:

It is true that . ..
and seeing whether the result makes grammatical sense.

* Atomic propositions. Intuitively, these are the set of smallest
propositions.

* Definition: An atomic proposition is one whose truth or falsity does
not depend on the truth or falsity of any other proposition.

* So all the above propositions are atomic.

* Shortcut: rather than write out propositions in full, we will
abbreviate them by using propositional variables.

* It is standard practice to use the lower-case roman letters
b, qr...

to stand for propositions.

Sometimes, Greek letters are also used, e.g.:

phi

capital Phi

psi
pi

* If we do this, we must define what we mean by writing something like:
Let p be It is raining outside.

* Another alternative is to write something like it-is-raining-outside,
so that the interpretation of the propositional variable becomes obvious.

The Connectives

* Now, the study of atomic propositions is pretty boring.We therefore
now introduce a number of connectives which will allow us to build up
complex propositions.

* The connectives we introduce are:

A and (& or .)
Vor (| or +)
— not (~)
= implies (D or —)
& iff (o)

(Alternate symbols commonly used are in parentheses.)

And

* Any two propositions can be combined by the word “and” to form a
third proposition called the conjunction of the original propositions.

* Definition: If p and g are arbitrary propositions, then the conjunction
of p and g is written

pAq

and will be true iff both p and g are true.

Truth Table

* We can summarise the operation of A in a truth table.

The idea of a truth table for some formula is that it describes the
behavior of a formula under_all possible interpretations of the primitive
propositions that are included in the formula.

* If there are n different atomic propositions in some formula, then there
are 2" different lines in the truth table for that formula. (This is because
each proposition can take one |of 2 values—i.e., true or false.)

* Let us write T for truth, and F for falsity.
Then the truth table for p A g is:

p A g

Or

* Any two propositions can be combined by the word “or” to form a
third proposition called the disjunction of the originals.

* Definition: If p and g are arbitrary propositions, then the disjunction
of p and q is written

PVq

and will be true iff either p is true, or q is true, or both p and g are true.

Or Truth Table

* The operation of V is summarised in the following truth table:

PV q

* Note that this “or” is a little different from the usual meaning we give
to “or” in everyday natural language.

If... Then...

* Many statements, particularly in mathematics, are of the form:
if p is true then q is true.
Another way of saying the same thing is to write:

b implies q.

* In propositional logic, we have a connective that combines two
propositions into a new proposition called the conditional, or implication
of the originals, that attempts to capture the sense of such a statement.

* Definition: If p and q are arbitrary propositions, then the conditional
of p and q is written

P=(

and will be true iff either p is false or q is true.

* The truth table for = is:

* The = operator is the hardest to understand of the operators we have

considered so far, and yet it is extremely important.

* If you find it difficult to understand, just remember that the p = q

means “if p is true, then q is true’”. (Most intuitive meaning)

Further to that, if p is false, then we don’t care about g, and by default,
we make p = q evaluate to T in this case. (does not imply qisT)

Otherwise, p = q is false when p is true and q is false.

* Terminology:if ¢ is the formula p = q,then p is the antecedent

of ¢ and qis the consequent.

|

* Another common form of statement in maths is:
b is true if, and only if, q is true.

* The sense of such statements is captured using the biconditional
operator.

* Definition: If p and g are arbitrary propositions, then the biconditional
of p and q is written:

p<(q
and will be true iff either:

|.p and g are both true; or

2.p and g are both false.

* The truth table for < is:

* If p & qis true, then p and g are said to be logically equivalent.

They will be true under exactly the same circumstances.

Not

* All of the connectives we have considered so far have been binary: they
have taken two arguments.

* The final connective we consider here is unary: It only takes one
argument.

* Any proposition can be prefixed by the word ‘not’ to form a second
proposition called the negation of the original.

* Definition: If p is an arbitrary proposition then the negation of p is
written

P

and will be true iff p is false.

* Truth table for —:

Well Formed Formulae

* We can nest complex formulae as deeply as we want.
* We can use parentheses i.e.,),(, to disambiguate formulae.

« EXAMPLES.If p, g, r,s and t are atomic propositions, then all of the

following are formulae:
—bAg=r

~PA(@=T)
—(PA(@=1) Vs
—((PA(@=1) Vs) At

whereas none of the following is:

-pA

—-pAQ)

—p—

Interpretation

* Given a particular formula, can you tell if it is true or not?

* No — you usually need to know the truth values of the component
atomic propositions in order to be able to tell whether a formula is true.

* Definition: A valuation is a function which assigns a truth value to
each primitive proposition.

* In C, we might write:

short Val(AtomicProp *p) {
if (*p)
return(1); // true
else
return(0); // false

}

* Given a valuation, we can say for any formula whether it is true or
false.

* A valuation is also known as an interpretation

* EXAMPLE. Suppose we have a valuation v, such that:

v(p) = F
v(q) =T
v(r) = F

Then the truth value of (p VV q) = r is evaluated by:

(v(p) V v(q)) = v(r)
=(FVvT)=F
=T=F

=F

Line (3) is justified since we know that FVT =T.

Line (4) is justified sinceT = F=F

If you can’t see this, look at the truth tables for V and =.

* When we consider formulae in terms of interpretations, it turns out
that some have interesting properties.

* Definition:
|.A formula is a tautology iff it is true under every valuation;

2.A formula is consistent iff it is true under at least one valuation;

3.A formula is inconsistent iff it is not made true under any

valuation.
* A tautology is said to be valid.
A consistent formula is said to be satisfiable.

* An inconsistent formula is said to be unsatisfiable.

* Theorem: ¢ is a tautology iff = ¢ is unsatisfiable.

* Each line in the truth table of a formula corresponds to a valuation.

* We can use truth tables to determine whether or not formulae are
tautologies.

* If every line in the truth table has value T, the the formula is a

tautology.

* Also use truth-tables to determine whether or not formulae are
consistent.

* To check for consistency, we just need to find one valuation that
satisfies the formula.

* If this turns out to be the first line in the truth-table, we can stop
looking immediately! We have a certificate of satisfiability.

* To check for validity, we need to examine every line of the truth-table.

No short cuts.
* The lesson!?

® Checking satisfiability is easier than checking validity.

Syntax

* We have already informally introduced propositional logic; we now
define it formally.

* To define the syntax, we must consider what symbols can appear in
formulae, and the rules governing how these symbols may be put
together to make acceptable formulae.

* Definition: Propositional logic contains the following symbols:
|.A set of primitive propositions, © = {p,q,r...}.

2.The unary logical connective ‘7’ (not), and binary logical connective

V' (or). (We will see about the others shortly.)

3.The punctuation symbols)’ and ‘(.

* The primitive propositions will be used to represent statements such
as:

® | am in Brooklyn
® [t is raining
® |t is Thursday the |2th of April.

These are primitive in the sense that they are indivisible; we cannot break
them into smaller propositions.

* The remaining logical connectives (A, =, <) will be introduced as

abbreviations.

Grammar

* We now look at the rules for putting formulae together.

* Definition: The set WFF, of (well formed) formulae of propositional
logic, is defined by the following rules:

I.If p € @, then p € WFF

2. If © € WFF, then:
—1 0 e WFF

(¢)) € WFF

3.1f ¢ eWFFand v»€eWFFthen ¢ Vv €WFE

Connectives as Abbreviations

* The remaining connectives are defined by:

=1 = (—¢) VY

O = 1 (0= Y) A (Y = @)

* These connectives are interpreted:

A And
= Implies (if... then ...
& f, and only if

* This concludes the formal definition of syntax.

Semantics

* We now look at the more difficult issue of semantics, or meaning.
* What does a proposition mean!?
* That is, when we write
It is raining.
what does it mean!’

From the point of view of logic, this statement is a proposition: something
that is either T or L.

* The meaning of a primitive proposition is thus either T or L.

* In the same way, the meaning of a formula of propositional logic is
either T or L.

* QUESTION: How can we tell whether a formulais T or 1?

* For example, consider the formula
(PAQ) =r

Is this T ?

* The answer must be: possibly. It depends on your interpretation of the
primitive propositions p, g and r.

* The notion of an interpretation is easily formalised.

* Definition: An interpretation for propositional logic is a function

. ®— {T,F}

which assigns T (true) or F (false) to every primitive proposition.

* But an interpretation only gives us the meaning of primitive
propositions;

What about complex propositions — arbitrary formulae!?

* We use some rules which tell us how to obtain the meaning of an
arbitrary formulae, given some interpretation.

* Before presenting these rules, we introduce a symbol: =
If 7 is an interpretation,and is a formula, then the expression

T = @
will be used to represent the fact that ¢ is T under the interpretation .
Alternatively, if 7 = ¢ ,then we say that:

— T satisfies ¢ ; or

— 7 models ¢

* The symbol = is called the semantic turnstile (or entailment).

Entailment

Sentences Sentences

/\/\/\

Would like to tell whether one set of Sentences entails the other?
(If one set of Sentences are true then the other set will be true too)

Entailment

Sentences Sentences

v

semaX\ics

Interpretations

Through semantics arrive at a set of interpretations that satisfies the sentence.

Entailment

Sentences Sentences

BN

/_/_\

\4 v

Interpretations Interpretations

semaX\ics
semant\iA§

Likewise.

Entailment

Sentences Sentences

T~

/_/\

v v
. subset .
Interpretations > Interpretations

semaX\ics
semant\iA§

Now the question is whether the first set of interpretations is a subset of the
the other set.

Entailment

entails
Sentences > Sentences

/\/\

v v
. subset .
Interpretations > Interpretations

T~

semaX\ics
semant\iA§

In all interpretations of the first set of sentences that are true are also true for
the second set of sentences.

Entailment

entails
Sentences > Sentences

/\/\

\4 \4

. subset .
Interpretations > Interpretations

T~

semaX\ics
semant\iA§

KBi=AAB
KB2=B

Viewed textually. Two sets of sentences (KBl and KB2)

Entailment

entails
Sentences > Sentences

/\/\

\4 \4

. subset .
Interpretations > Interpretations

KBi=AAB
KB2=B
U

Venn Diagrams. U the universe of discourse

T~

semaX\ics
semant\iA§

Entailment

entails
Sentences > Sentences

/_/\

\4 \4

. subset .
Interpretations > Interpretations

oAt < >>

B (or rather the interpretations that make B true) lies within this domain.

T~

semaX\ics
semant\iA§

Entailment

entails
Sentences > Sentences

/_/\

v v
. subset .
Interpretations > Interpretations

KBi =A AB
KB2 = B >B
U

So A A B is a model of of B, as all interpretations that lie within

T~

semaX\ics
semant\iA§

A and B lie also within B.

* The rule for primitive propositions is quite simple. If p € ® then
TEpittx(p)="T.

* The remaining rules are defined recursively.

* The rule for —:

(where = means ‘does not satisfy’.)

* The rule for Vv:
TEoVYiffrl=gor T

* Since these are the only connectives of the language, these are the only
semantic rules we need.

e Since:

is defined as:
(—d) Vo

it follows that:

TE¢o=Yiffr Eporm =1

* And similarly for the other connectives we defined.

* If we are given an interpretation 7 and a formula ¢, it is a simple

(if tedious) matter to determine whether m™ = ¢

* We just apply the rules above, which eventually bottom out of the
recursion into establishing if some proposition is true or not.

e So for:

(pVg)AlgVr)

we first establish if p V g or g V r are true and then work up to the

compound proposition.

Proof Theory

* What is logic used for? A number of things, but most importantly, it is a
language for representing the properties of things.

* But also, we hope it will give us a method for establishing the properties of
things.

* To see how logic may be used to establish the properties of things, it
helps to look at its history.

* Logic was originally developed to make the notion of an argument
precise.

(We do not mean argument as in fighting here!)

* Here is a classic argument:

All men are mortal

Socrates is a2 man

Socrates is mortal

* This example serves to illustrate a number of features of arguments:

—The argument has a number of premises — these are the statements
that appear before the horizontal line;

—The argument has a conclusion — this is the statement that appears
after the horizontal line;

— The argument has the form

If
you accept that
the premises are true
then
you must accept that
the conclusion is true.

Soundness

* In mathematics, we are concerned with when arguments are sound.

* To formalise the notion of a sound argument, we need some extra
terminology. . .

 Definition: If © € WFF, then:

|.if there is some interpretation 7 such that

then ¢ is said to be satisfiable, otherwise @ s unsatisfiable.
2.if

T =
for all interpretations 7,then ¢ is said to be valid.

* Valid formulae of propositional logic are called tautologies.

* Theorem:;

|.If ¢@is a valid (tautology) formula, then = ¢ is unsatisfiable;

2.If 7 @ is unsatisfiable, then @ is valid.

* We indicate that a formula @ is valid by writing

I: -.rT}

* We can now define the logical consequence.

 Definition: If

{61, Pny &} C WFF

then ¢ is said to be a logical consequence of { 1.
satisfied by all interpretations that satisfy

DLA A .

* We indicate that ¢ is a logical consequence of ¢1,..., ¢, by writing

(D1,-., 0u} = &

* An expression like this is called a semantic sequent.

e Theorem:

(1., da} = 6.

= (LN ANy, = O

)

* So we have a method for determining whether ¢ is a logical
consequence of @1;-- - @n:

we use a truth table to see whether ¢; A --- A ¢, = ¢ is a tautology.

If it is, then ¢ is a logical consequence of ¢1,...,¢,.

* Our main concern in proof theory is thus to have a technique for determining
whether a given formula is valid, as this will then give us a technique for
determining whether some formula is a logical consequence of some others.

« EXAMPLE. Show that

PAqgEPVY

To do this, we construct a truth-table for
pAg) = (pVq)

Here it is:

(pAg)= (pVq)
is true under every interpretation, we have that p V q is a logical

consequence of p A q.

Truth Tables are Exhaustive

* The notion of logical consequence we have defined above is acceptable
for a definition of a sound argument, but is not very helpful for checking
whether a particular argument is sound or not.

* The problem is that we must look at all the possible interpretations of
the primitive proposition s.While this is acceptable for, say, 4 primitive
propositions, it will clearly be unacceptable for 100 propositions, as it
would mean checking 2*100 interpretations.

(Moreover, for first-order logic, there will be an infinite number of such
interpretations.)

* What we require instead is an alternative version of logical
consequence, that does not involve this kind of checking.

This leads us to the idea of syntactic proof.

‘Syntactic’ Proof

* The idea of syntactic proof is to replace the semantic checking to
determine whether a formula is valid by a procedure that involves purely
syntactic manipulation.

* The kinds of techniques that we shall use are similar to those that we
use when solving problems in algebra.

* The basic idea is that to show that ¢ is a logical consequence
of ¢1,...,0, we use a set of rules to manipulate formulae.

If we can derive ¢ from ¢, ..., ¢, by using these rules, then ¢ is said
to be proved from ¢1,. .., ¢» which we indicate by

writing:

e"."':-'l? " e ey e‘_;."';i'ﬂ - 0.

™

* The symbol /s called the syntactic turnstile.
* An expression of the form

RN 5 a0}
is called a syntactic sequent.

* A rule has the general form:
O T o) rule name
6

Such a rule is read: If

®1....,¢, are proved

then

¢ is proved.

« EXAMPLE. Here is an example of such a rule:

= o A
mROFARE

This rule is called and-introduction. It says that if we have proved ¢,
and we have also proved 7, then we can prove ¢ A 2.

« EXAMPLE. Here is another rule;

oA N-E
=@ b

This rule is called and elimination. It says that if we have
proved ¢ A7, then we can prove both ¢ and 7 ;it allows us to eliminate
the A symbol from between them.

Definition of Proof

* Let us now try to define precisely what we mean by proof.

* Definition: (Proof) If
101, Om, ¢} € WFF

Om iff there exists some

then there is a proof of ¢ from ¢
sequence of formulae:

such that ¥, = ¢, and each formula ¥k, for | £ k < n is either one of
the formula @1,....®m. or else is the conclusion of a rule whose
antecedents appeared earlier in the sequence.

* If there is a proof of ¢ from ¢
writing:

®m, ,then we indicate this by

* It should be clear that the symbols - and = are related.We now have
to state exactly how they are related.

* There are two properties of - o consider:
— soundness;
— completness.

— Intuitively, I is said to be sound if it is correct, in that it does not let us
derive something that is not true.

— Intuitively, completeness means that will let us prove anything that is
true.

» Definition: (Soundness) A proof system I is said to be sound with
respect to semantics = iff

D1y Op E O

implies

* Definition: (Completeness) A proof system I is said to be complete
with respect to semantics = iff

implies

