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Predicate Logic

• First-order predicate logic

• More expressive than propositional logic.

• Consider the following argument:

– all monitors are ready;

– X12 is a monitor;

– therefore X12 is ready.

• Sense of this argument cannot be captured in propositional logic.

• Propositional logic is too coarse grained to allow us to represent and 
reason about this kind of statement.



Syntax

• We shall now introduce a generalization of propositional logic called 
first-order logic (FOL). This new logic affords us much greater expressive 
power.

• Definition: The alphabet of FOPL contains:

1. a set of constants;

2. a set of variables;

3. a set of function symbols;

4. a set of predicates symbols;

5. the connectives ∨, ¬;

6. the quantifiers ∀, ∃, ∃1;

7. the punctuation symbols ), (.



Terms : Constants

• The basic components of FOL are called terms.

• Essentially, a term is an object that denotes some object other than ⊤ 
or ⊥.

• The simplest kind of term is a constant.

• A value such as 8 is a constant.

• The denotation of this term is the number 8.

• Note that a constant and the number it denotes are different!

• Aliens don’t write “8” for the number 8, and nor did the Romans.



Terms : Variables

• The second simplest kind of term is a variable.

• A variable can stand for anything in the domain of discourse.

• The domain of discourse (usually abbreviated to domain) is the set of 
all objects under consideration.

• Sometimes, we assume the set contains “everything”.

• Sometimes, we explicitly give the set, and state what variables/constants 
can stand for.



Terms : Functions

• We can now introduce a more complex class of terms — functions.

• The idea of functional terms in logic is similar to the idea of a function 
in programming: recall that in programming, a function is a procedure 
that takes some arguments, and returns a value.

In C:

T myfunction( T1 a1, ..., Tn an ) {

...

}

this function takes n arguments; the first is of type T1, the second is of 
type T2, and so on. The function returns a value of type T.

• In FOL, we have a set of function symbols; each symbol corresponds to a 
particular function. (It denotes some function.)



Function: arity

• Each function symbol is associated with a number called its arity. This is 
just the number of arguments it takes.

• A functional term is built up by applying a function symbol to the 
appropriate number of terms.

• Formally . . .

Definition: Let f be an arbitrary function symbol of arity n.   Also, let  
1, . . . ,  n     be terms.  Then

is a functional term.



Function : arity

• All this sounds complicated, but isn’t. Consider a function plus, which 
takes just two arguments, each of which is a number, and returns the first 
number added to the second.

Then:

– plus(2, 3) is an acceptable functional term;

– plus(0, 1) is acceptable;

– plus(plus(1, 2), 4) is acceptable;

– plus(plus(plus(0, 1), 2), 4) is acceptable;



Functions

• In maths, we have many functions; the obvious ones are

• The fact that we write

2 + 3

instead of something like

plus(2, 3)

is just convention, and is not relevant from the point of view of logic; all 
these are functions in exactly the way we have defined.



Function

• Using functions, constants, and variables, we can build up expressions, 
e.g.:

(x + 3) ∗ sin 90

(which might just as well be written

times(plus(x, 3), sin(90))

for all it matters.)



Predicates

• In addition to having terms, FOL has relational operators, which capture 
relationships between objects.

• The language of FOL contains predicate symbols.

• These symbols stand for relationships between objects.

• Each predicate symbol has an associated arity (number of arguments).

• Definition: Let P be a predicate symbol of arity n, and  1, . . . ,  n   are 
terms.

Then

is a predicate, which will either be ⊤ or ⊥ under some interpretation.



• EXAMPLE. Let gt be a predicate symbol with the intended 
interpretation ‘greater than’.  It takes two arguments, each of which is a 
natural number.

Then:

– gt(4, 3) is a predicate, which evaluates to ⊤;

– gt(3, 4) is a predicate, which evaluates to ⊥.

• The following are standard mathematical predicate symbols:

> < =     ≥ ≤ . . .

• The fact that we are normally write x > y instead of gt(x, y) is just 
convention.



• We can build up more complex predicates using the connectives of 
propositional logic:

(2 > 3) ∧ (6 = 7) ∨ (√4 = 2)

• So a predicate just expresses a relationship between some values.

• What happens if a predicate contains variables: can we tell if it is true or 
false?

Not usually; we need to know an interpretation for the variables.

• A predicate that contains no variables is a proposition.



Properties

• Predicates of arity 1 are called properties.

• EXAMPLE. The following are properties:

Man(x)

Mortal(x)

Malfunctioning(x).

• We interpret P(x) as saying x is in the set P.

• Predicate that have arity 0 (i.e., take no arguments) are called primitive 
propositions.

These are identical to the primitive propositions we saw in propositional 
logic.



Quantifiers

• We now come to the central part of first order logic: quantification.

• Consider trying to represent the following statements:

– all men have a mother ;

– every positive integer has a prime factor.

• We can’t represent these using the apparatus we’ve got so far; we need 
quantifiers.



Quantifiers

• We use three quantifers:

∀ — the universal quantifier ;

• is read ‘for all. . . ’

∃ — the existential quantifier ;

• is read ‘there exists. . . ’

∃1 — the unique quantifier ;

• is read ‘there exists a unique. . . ’



• The simplest form of quantified formula is as follows:

quantifier variable ・ predicate

where

– quantifier is one of ∀, ∃, ∃1;

– variable is a variable;

– and predicate is a predicate.



Examples

• ∀x ・Man(x) ⇒ Mortal(x)

‘For all x, if x is a man, then x is mortal.’

(i.e. all men are mortal)

• ∀x ・Man(x) ⇒ ∃1y ・Woman(y) ∧ MotherOf(x, y)

‘For all x, if x is a man, then there exists exactly one y such that y is a 
woman and the mother of x is y.’

(i.e., every man has exactly one mother).



Examples

• ∃m ・Monitor(m) ∧ MonitorState(m, ready)

‘There exists a monitor that is in a ready state.’

• ∀r ・ Reactor(r) ⇒ ∃1t ・ (100 ≤ t ≤ 1000) ∧ temp(r) = t

‘Every reactor will have a temperature in the range 100 to 1000.’



• ∃n ・ posInt(n) ∧ n = (n ∗ n)

“Some positive integer is equal to its own square.”

• ∃c ・ EUcountry(c) ∧ Borders(c, Albania)

“Some EU country borders Albania.”

• ∀m, n ・ Person(m) ∧ Person(n) ⇒ ¬Superior(m, n)

“No person is superior to another.”

• ∀m ・ Person(m) ⇒ ¬∃n ・ Person(n) ∧ Superior(m, n)

(same as previous)



Domains & Interpretations

• Suppose we have a formula ∀x ・ P(x).

What does x range over?

Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend.

• Often, we name a domain to make our intended interpretation clear.



Example of Domains

• Suppose our intended interpretation is the positive integers. 
Suppose >,+, ∗, . . . have the usual mathematical interpretation.

• Is this formula satisfiable under this interpretation?

∃n ・ n = (n ∗ n)

• Now suppose that our domain is all living people, 
and that ∗ means “is the child of”.

• Is the formula satisfiable under this interpretation?



Conjunctions

• Note that universal quantification is similar to conjunction.

Suppose the domain is the numbers {2, 4, 6}. Then

∀n ・ Even(n)

is the same as

Even(2) ∧ Even(4) ∧ Even(6).

• Existential quantification is similar to disjunction. Thus with the same 
domain,

∃n ・ Even(n)

is the same as

Even(2) ∨ Even(4) ∨ Even(6)



• The universal and existential quantifiers are in fact duals of each other:

∀x ・ P(x) ⇔ ¬∃x ・ ¬P(x)

Saying that everything has some property is the same as saying that there is 
nothing that does not have the property.

∃x ・ P(x) ⇔ ¬∀x ・ ¬P(x)

Saying that there is something that has the property is the same as saying that 
its not the case that everything doesn’t have the property.



Validity

• In propositional logic, we saw that some formulae were tautologies — 
they had the property of being true under all interpretations.

• We also saw that there was a procedure which could be used to tell 
whether any formula was a tautology — this procedure was the truth-
table method.

• A formula of FOL that is true under all interpretations is said to be 
valid.

• So in theory we could check for validity by writing down all the 
possible interpretations and looking to see whether the formula is true 
or not.



Decidability and Undecidability

• Unfortuately in general we can’t use this method.

• Consider the formula:

∀n ・ Even(n) ⇒ ¬Odd(n)

• There are an infinite number of interpretations.

• Is there any other procedure that we can use, that will be guaranteed 
to tell us, in a finite amount of time, whether a FOL formula is, or is not, 
valid?

• The answer is no.

• FOL is for this reason said to be undecidable.



Proof in FOL

• Proof in FOL is similar to propositional logic (PL); we just need an 
extra set of rules, to deal with the quantifiers.

• FOL inherits all the rules of PL.

• To understand FOL proof rules, need to understand substitution.

• The most obvious rule, for ∀-E.

Tells us that if everything in the domain has some property, then we can 
infer that any particular individual has the property.

Going from general to specific

for any a in the domain



Example 1

Let’s use ∀-E to get the Socrates example out of the way.



• Existential Introduction Rule 1 (∃-I(1)).

• We can also go from the general to the slightly less specific!

Note the side condition.

The ∃ quantifier asserts the existence of at least one object.

The ∀ quantifier does not.

if domain not empty



• Existential Introduction Rule 2 (∃-I(2)).

• We can also go from the very specific to less specific.

• In other words once we have a concrete example, we can infer there 
exists something with the property of that example.



• We often informally make use of arguments along the lines. . .

1. We know somebody is the murderer.

2. Call this person a.

3. . . .

(Here,  a is called a Skolem constant.)

• We have a rule which allows this, but we have to be careful how we use 
it!

a doesn’t occur elsewhere



• Here is an invalid use of this rule:

• (The conclusion may be true, the argument isn’t sound.)



Example 2

1. Everybody is either happy or rich.

2. Simon is not rich.

3. Therefore, Simon is happy.

Predicates:

– H(x) means x is happy;

– R(x) means x is rich.

• Formalisation:

∀ x  H(x) ∨ R(x); ¬R(Simon) ⊢ H(Simon)



Proof


