# Planning

Preceded by Logic Agents

CIS 32

# Functionalia

HW 4 Part A :

DO the Neural Network Problem from HW 2. No one did it and it will be on the Final.

Today:

Constructing the Logical Agent

Planning

**STRIPS** Planning

HW 3

# Logic-Based Agents

- When we started talking about logic, it was as a means of representing knowledge.
- We wanted to represent knowledge in order to be able to build agents.
- We now know enough about logic to do that.
- We will now see how a *logic-based agent* can be designed to perform simple tasks.
- Assume each agent has a *database*, i.e., set of FOL-formulae.

These represent information the agent has about environment

### Notation

- $\bullet$  We'll write  $\Delta$  for this database.
- Also assume agent has set of *rules* (called **R**).
- We write  $\Delta \vdash_R \phi$  if the formula  $\phi$  can be proved from the database  $\Delta$  using only the rules **R**.

• How to program an agent:

Write the agent's rules **R** so that it should do action **a** whenever  $\Delta \vdash_R Do(a)$ .

Here, Do is a predicate.

• Also assume **A** is set of actions agent can perform.

# Logic Based Agent Algorithm

The agent's operations is as followed:

| 1.  | for each $a$ in $A$ do                   |
|-----|------------------------------------------|
| 2.  | if $\Delta \vdash_R Do(a)$ then          |
| 3.  | return $a$                               |
| 4.  | end-if                                   |
| 5.  | end-for                                  |
| 6.  | for each $a$ in $A$ do                   |
| 7.  | if $\Delta \not\vdash_R \neg Do(a)$ then |
| 8.  | return $a$                               |
| 9.  | end-if                                   |
| 10. | end-for                                  |
| 11. | return null                              |

### Example :Vacuum Robot

We have a small robot that will clean up a house.

The robot has a **sensor** to tell it whether it is over any dirt, and a **vacuum** that can be used to suck up dirt. Robot always has an orientation (one of *n*, *s*, *e*, or *w*). Robot can **move** forward one "step" or **turn** right 90 degrees.

The agent moves around a room, which is divided grid-like into a number of equally sized squares. Assume that the room is a 3 by 3 grid, and agent starts in square (0, 0) facing north.

What are some domain predicates that we can use to describe the world and robot state?

Next Slide Shows Picture

### Robot Environment

| dirt  | dirt  |       |
|-------|-------|-------|
| (0,2) | (1,2) | (2,2) |
| (0,1) |       | (2,1) |
| (0,0) | (1,0) | (2,0) |

• Three domain predicates in this exercise:

In(x, y)agent is at (x, y)Dirt(x, y)there is dirt at (x, y)Facing(d)the agent is facing direction d

• For convenience, we write rules as (form of Horn Clause):

 $\phi(\ldots) \longrightarrow \psi(\ldots)$ 

• Three domain predicates in this exercise:

ln(x, y)agent is at (x, y)Dirt(x, y)there is dirt at (x, y)Facing(d)the agent is facing direction d

• For convenience, we write rules as (form of Horn Clause):

$$\phi(\ldots) \longrightarrow \psi(\ldots)$$

• First rule deals with the basic cleaning action of the agent

$$In(x, y) \wedge Dirt(x, y) \longrightarrow Do(suck)$$

• Hardwire the basic navigation algorithm, so that the robot will always move from (0, 0) to (0, 1) to (0, 2) then to (1, 2), (1, 1) and so on.

• Once agent reaches (2, 2), it must head back to (0, 0).

$$In(0,0) \wedge Facing(north) \wedge \neg Dirt(0,0) \longrightarrow Do(forward)$$
(2)  

$$In(0,1) \wedge Facing(north) \wedge \neg Dirt(0,1) \longrightarrow Do(forward)$$
(3)  

$$In(0,2) \wedge Facing(north) \wedge \neg Dirt(0,2) \longrightarrow Do(turn)$$
(4)  

$$In(0,2) \wedge Facing(east) \longrightarrow Do(forward)$$
(5)

- Other considerations:
  - adding new information after each move/action;
  - removing old information.
- Suppose we scale up to 10 × 10 grid?

# What is planning?

- Key problem facing agent is deciding what to do.
- We want agents to be *taskable*: give them *goals* to achieve, have them decide for themselves how to achieve them.
- Basic idea is to give an agent:
  - representation of goal to achieve;
  - knowledge about what actions it can perform; and
  - knowledge about state of the world;

and to have it generate a *plan* to achieve the goal.

• Essentially, this is

automatic programming

## High Level Box View of a Planner



- Question: How do we represent...
  - goal to be achieved;
  - state of environment;
  - actions available to agent;
  - plan itself.

Language expressive enough to describe a wide variety of problems.

Language restrictive enough to allow efficient operation over them.

**STRIPS** Language (using First Order Logic).

**ST**andford **R**esearch Institute **P**roblem **S**olver.

# **Blocks World**

- We'll illustrate the techniques with reference to the *blocks world*.
- Contains a robot arm, 3 blocks (A, B and C) of equal size, and a tabletop.
- Initial state:



• To represent this environment, need an *ontology* 

On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

• Here is a first-order logic representation of the blocks world described above:

Clear(A) On(A,B) OnTable(B) OnTable(C) Clear(C)

• Uses ground literals (function-free)

**not** Clear(x,y), or Clear(OnTopOf(B))

• Use the closed world assumption: anything not stated is assumed to be false

• A goal is represented as a first-order logic formula. (Conjunction of positive ground literals)

• Here is a goal:

 $OnTable(A) \land OnTable(B) \land OnTable(C)$ 

• Which corresponds to the state:

![](_page_16_Figure_4.jpeg)

• Actions are represented using a technique that was developed in the STRIPS planner.

- Each action has:
  - a *nam*e
  - which may have arguments;
  - a pre-condition list
  - list of facts which must be true for action to be executed;
  - a delete list
  - list of facts that are no longer true after action is performed;
  - an *add list*
  - list of facts made true by executing the action.

Each of these may contain variables

# Stack

#### • Example I:

The stack action occurs when the robot arm places the object x it is holding is placed on top of object y.

|     | Stack(x, y)                  |
|-----|------------------------------|
| pre | $Clear(y) \wedge Holding(x)$ |
| del | $Clear(y) \wedge Holding(x)$ |
| add | ArmEmpty $\land$ On(x, y)    |

# Unstack

#### • Example 2:

The *unstack* action occurs when the robot arm picks an object *x* up from on top of another object *y*.

|     | UnStack(x, y)                              |
|-----|--------------------------------------------|
| pre | $On(x, y) \wedge Clear(x) \wedge ArmEmpty$ |
| del | On(x, y) ∧ ArmEmpty                        |
| add | $Holding(x) \wedge Clear(y)$               |

Stack and UnStack are *inverses* of one-another.

# Pickup

#### • Example 3:

The *pickup* action occurs when the arm picks up an object x from the table.

|     | Pickup(x)                                  |
|-----|--------------------------------------------|
| pre | $Clear(x) \land OnTable(x) \land ArmEmpty$ |
| del | OnTable(x) ∧ ArmEmpty                      |
| add | Holding(x)                                 |

# Putdown

#### • Example 4:

The *putdown* action occurs when the arm places the object *x* onto the table.

|     | PutDown(x)                  |
|-----|-----------------------------|
| pre | Holding(x)                  |
| del | Holding(x)                  |
| add | $OnTable(x) \land ArmEmpty$ |

• What is a plan?

A sequence (list) of actions, with variables replaced by constants.

Constants being: A, B, C, Floor

• So, to get from:

![](_page_22_Figure_4.jpeg)

• We need the set of actions:

![](_page_23_Figure_1.jpeg)

• In "*real life*", plans contain conditionals (IF ..THEN...) and loops (WHILE... DO...), but most simple planners cannot handle such constructs — they construct *linear plans*.

- Simplest approach to planning: means-ends analysis.
- Involves backward chaining from **goal** to original **start state**.
  - I. Start by finding an action that has goal as post-condition. (Assume this is the *last* action in plan.)
  - 2. Then figure out what the previous state would have been.
  - 3. Try to find action that has this state as post-condition.
- Recurse until we end up (hopefully!) in original state

#### function plan(

![](_page_25_Figure_1.jpeg)

### How does this work on the previous example?

![](_page_26_Figure_1.jpeg)

### How does this work on the previous example?

### Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

#### **Goal** OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

|     | Stack(x, y)                                |     | UnStack(x, y)                             |
|-----|--------------------------------------------|-----|-------------------------------------------|
| pre | $Clear(y) \wedge Holding(x)$               | pre | $On(x, y) \wedge Clear(x) \wedge ArmEmpt$ |
| del | $Clear(y) \wedge Holding(x)$               | del | On(x, y) ∧ ArmEmpt                        |
| add | ArmEmpty $\wedge$ On(x, y)                 | add | Holding(x) $\land$ Clear(y                |
|     | Pickup(x)                                  |     | PutDown(x)                                |
| pre | $Clear(x) \land OnTable(x) \land ArmEmpty$ | pre | Holding(x)                                |
| del | $OnTable(x) \land ArmEmpty$                | del | Holding(x)                                |
| add | Holding(x)                                 | add | $OnTable(x) \wedge ArmEmpty$              |

**Goal** OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

# Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

| F |     | Stack(x, y)                                |     | UnStack(x, y)                              |
|---|-----|--------------------------------------------|-----|--------------------------------------------|
|   | pre | $Clear(y) \wedge Holding(x)$               | pre | $On(x, y) \wedge Clear(x) \wedge ArmEmpty$ |
|   | del | $Clear(y) \wedge Holding(x)$               | del | On(x, y) ∧ ArmEmpty                        |
|   | add | ArmEmpty $\wedge$ On(x, y)                 | add | Holding(x) $\land$ Clear(y)                |
|   |     |                                            |     |                                            |
|   |     | Pickup(x)                                  |     | PutDown(x)                                 |
|   | pre | $Clear(x) \land OnTable(x) \land ArmEmpty$ | pre | Holding(x)                                 |
|   | del | $OnTable(x) \land ArmEmpty$                | del | Holding(x)                                 |
|   | add | Holding(x)                                 | add | $OnTable(x) \land ArmEmpty$                |

Goal OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

# Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

- This algorithm not guaranteed to find the plan...
- ... but it is sound: If it finds the plan that is correct.
- Some problems:
  - negative goals;
  - maintenance of goals;
  - conditionals & loops;
  - exponential search space;

# The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of performing an action?

If I pick up a block, does my hair color stay the same?

• One solution is to write *frame axioms*.

Here is a frame axiom, which states that CHIPP's hair color is the same in all the situations (symbolized by s and s') that result from performing Pickup(x) in situation s as it is in s'.

 $\forall$ s, s'. Result(CHIPP, Pickup(x), s) = s'  $\Rightarrow$ 

HairColor(CHIPP, s) = HairColor(CHIPP, s')

# **STRIPS Planning**

- Stating frame axioms in this way is unfeasible for real problems.
- (Think of all the things that we would have to state in order to cover all the possible frame axioms).
- STRIPS solves this problem by assuming that everything not explicitly stated to have changed remains unchanged.
- The price we pay for this is that we lose the advantages of using logic:
  - Semantics goes out of the window
- However, more recent work has effectively solved the frame problem (using clever second-order approaches).

Second-order Logic (BTW) - involved quantification across different sets

### Sussman's Anomaly

• Consider we have the following initial state and goal state:

![](_page_33_Figure_2.jpeg)

• What operations will be in the plan?

• Clearly we need to Stack B on C at some point, and we also need to Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the UnStack first, and the Stack B on C, but the planner has no way of knowing this.

- It also has no way of "undoing" a partial plan if it leads into a dead end.
- So if it chooses to Stack(A,C) after the Unstack, it is sunk.
- This is a big problem with linear planners
- How could we modify our planning algorithm?

- Modify the middle of the algorithm to be:
- I. if  $d \models g$  then
- 2. return *p*
- 3. else
- 4. choose *a* in A such that
- 5.  $add(a) \models g$  and
- 6.  $del(a) \not\models g$
- 6a. no clobber(add(a), del(a), rest of plan)
- 7. set g = pre(a)
- 8. append a to p
- 9. return plan(d, g, p,A)
- We do this with partial-order planning.