Planning

CIS 32

Functionalia

HW 4 is Up - Quesitons?

It is due in one (I) week, and is comprised of the Neural Network Problem; and a Planning Problem.

Today:

Planning (Brief Overview Again)

STRIPS Planning

Partial-Order Planning

What is planning?

- Key problem facing agent is deciding what to do.
- We want agents to be *taskable*: give them *goals* to achieve, have them decide for themselves how to achieve them.
- Basic idea is to give an agent:
 - representation of goal to achieve;
 - knowledge about what actions it can perform; and
 - knowledge about state of the world;

and to have it generate a *plan* to achieve the goal.

• Essentially, this is

automatic programming

High Level Box View of a Planner

- Question: How do we represent...
 - goal to be achieved;
 - state of environment;
 - actions available to agent;
 - plan itself.

Language expressive enough to describe a wide variety of problems.

Language restrictive enough to allow efficient operation over them.

STRIPS Language (using First Order Logic).

STandford **R**esearch Institute **P**roblem **S**olver.

Blocks World

- We'll illustrate the techniques with reference to the *blocks world*.
- Contains a robot arm, 3 blocks (A, B and C) of equal size, and a tabletop.
- Initial state:

• To represent this environment, need an *ontology*

On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

• Here is a first-order logic representation of the blocks world described above:

Clear(A) On(A,B) OnTable(B) OnTable(C) Clear(C)

• Uses ground literals (function-free)

not Clear(x,y), or Clear(OnTopOf(B))

• Use the closed world assumption: anything not stated is assumed to be false

• A goal is represented as a first-order logic formula. (Conjunction of positive ground literals)

• Here is a goal:

 $OnTable(A) \land OnTable(B) \land OnTable(C)$

• Which corresponds to the state:

• Actions are represented using a technique that was developed in the STRIPS planner.

- Each action has:
 - a *nam*e
 - which may have arguments;
 - a pre-condition list
 - list of facts which must be true for action to be executed;
 - a delete list
 - list of facts that are no longer true after action is performed;
 - an *add list*
 - list of facts made true by executing the action.

Each of these may contain variables

Stack

• Example I:

The stack action occurs when the robot arm places the object x it is holding is placed on top of object y.

	Stack(x, y)
pre	$Clear(y) \wedge Holding(x)$
del	$Clear(y) \wedge Holding(x)$
add	ArmEmpty \land On(x, y)

Unstack

• Example 2:

The *unstack* action occurs when the robot arm picks an object *x* up from on top of another object *y*.

	UnStack(x, y)
pre	$On(x, y) \wedge Clear(x) \wedge ArmEmpty$
del	On(x, y) ∧ ArmEmpty
add	$Holding(x) \wedge Clear(y)$

Stack and UnStack are *inverses* of one-another.

Pickup

• Example 3:

The *pickup* action occurs when the arm picks up an object x from the table.

	Pickup(x)
pre	$Clear(x) \land OnTable(x) \land ArmEmpty$
del	OnTable(x) ∧ ArmEmpty
add	Holding(x)

Putdown

• Example 4:

The *putdown* action occurs when the arm places the object *x* onto the table.

	PutDown(x)
pre	Holding(x)
del	Holding(x)
add	$OnTable(x) \land ArmEmpty$

• What is a plan?

A sequence (list) of actions, with variables replaced by constants.

Constants being: A, B, C, Floor

• So, to get from:

• We need the set of actions:

• In "*real life*", plans contain conditionals (IF ..THEN...) and loops (WHILE... DO...), but most simple planners cannot handle such constructs — they construct *linear plans*.

- Simplest approach to planning: means-ends analysis.
- Involves backward chaining from **goal** to original **start state**.
 - I. Start by finding an action that has goal as post-condition. (Assume this is the *last* action in plan.)
 - 2. Then figure out what the previous state would have been.
 - 3. Try to find action that has this state as post-condition.
- Recurse until we end up (hopefully!) in original state

function plan(

How does this work on the previous example?

How does this work on the previous example?

Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

Goal OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

	Stack(x, y)		UnStack(x, y)
pre	$Clear(y) \wedge Holding(x)$	pre	$On(x, y) \wedge Clear(x) \wedge ArmEmpt$
del	$Clear(y) \wedge Holding(x)$	del	On(x, y) ∧ ArmEmpt
add	ArmEmpty \wedge On(x, y)	add	Holding(x) \land Clear(y
	Pickup(x)		PutDown(x)
pre	$Clear(x) \land OnTable(x) \land ArmEmpty$	pre	Holding(x)
del	$OnTable(x) \land ArmEmpty$	del	Holding(x)
add	Holding(x)	add	$OnTable(x) \land ArmEmpty$

Goal OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

F		Stack(x, y)		UnStack(x, y)
	pre	$Clear(y) \wedge Holding(x)$	pre	$On(x, y) \wedge Clear(x) \wedge ArmEmpty$
	del	$Clear(y) \wedge Holding(x)$	del	On(x, y) ∧ ArmEmpty
	add	ArmEmpty \wedge On(x, y)	add	Holding(x) \land Clear(y)
		Pickup(x)		PutDown(x)
	pre	$Clear(x) \land OnTable(x) \land ArmEmpty$	pre	Holding(x)
	del	$OnTable(x) \land ArmEmpty$	del	Holding(x)
	add	Holding(x)	add	$OnTable(x) \land ArmEmpty$

Goal OnTable(C) On(B,C) On(A,B) Clear(A) Clear(Floor) ArmEmpty

Start

OnTable(C) OnTable(B) On(A,B) Clear(A) Clear(C) Clear(Floor) ArmEmpty

- This algorithm not guaranteed to find the plan...
- ... but it is sound: If it finds a plan, that plan is correct.
- Some problems:
 - negative goals;
 - maintenance of goals(Frame Problem, Clobbering);
 - conditionals & loops;
 - exponential search space;

The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of performing an action?

If I pick up a block, does my hair color stay the same?

• One solution is to write *frame axioms*.

Here is a frame axiom, which states that CHIPP's hair color is the same in all the situations (symbolized by s and s') that result from performing Pickup(x) in situation s as it is in s'.

 \forall s, s'. Result(CHIPP, Pickup(x), s) = s' \Rightarrow

HairColor(CHIPP, s) = HairColor(CHIPP, s')

STRIPS Planning

- Stating frame axioms in this way is unfeasible for real problems.
- (Think of all the things that we would have to state in order to cover all the possible frame axioms).
- STRIPS solves this problem by assuming that everything not explicitly stated to have changed remains unchanged.
- The price we pay for this is that we lose the advantages of using logic:
 - Semantics goes out of the window
- However, more recent work has effectively solved the frame problem (using clever second-order approaches).

Second-order Logic (BTW) - involved quantification across different sets

Sussman's Anomaly

• Consider we have the following initial state and goal state:

• What operations will be in the plan?

• Clearly we need to Stack B on C at some point, and we also need to Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the UnStack first, and the Stack B on C, but the planner has no way of knowing this.

- It also has no way of "undoing" a partial plan if it leads into a dead end.
- So if it chooses to Stack(A,C) after the Unstack, it is sunk.
- This is a big problem with linear planners
- How could we modify our planning algorithm?

- Modify the middle of the algorithm to be:
- I. if $d \models g$ then
- 2. return *p*
- 3. else
- 4. choose *a* in A such that
- 5. $add(a) \models g$ and
- 6. $del(a) \not\models g$
- 6a. no clobber(add(a), del(a), rest of plan)
- 7. set g = pre(a)
- 8. append a to p
- 9. return plan(d, g, p,A)
- We do this with partial-order planning.

Partial Order Planning

- The answer to the problem is to use partial order planning.
- Basically this gives us a way of checking before adding an action to the plan that it doesn't mess up the rest of the plan.
- The problem is that in this recursive process, we don't know what the rest of the plan is.
- Need a new representation *partially ordered plans*.

Representation

Partial-Order Plan:

Total-Order Plans:

Representation

Partially ordered plans

- Partially ordered collection of steps with
 - Start step has the initial state description as its effect
 - Finish step has the goal description as its precondition
 - causal links from outcome of one step to precondition of another
 - temporal ordering between pairs of steps
- Open condition = precondition of a step not yet causally linked
- A plan is *complete* iff every precondition is achieved
- A precondition is *achieved* iff it is the effect of an earlier step and no possibly intervening step undoes it

Plan Construction

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

Plan construction (2)

Plan construction (3)

Planning process

- Operators on partial plans:
 - add a link from an existing action to an open condition
 - add a step to fulfill an open condition
 - order one step wrt another to remove possible conflicts
- Gradually move from incomplete/vague plans to complete, correct plans
- Backtrack if an open condition is unachievable or if a conflict is <u>unresolvable</u>

POP algorithm

function POP (*initial, goal, operators*) returns *plan plan* \leftarrow MAKE-MINIMAL-PLAN(*initial,goal*) loop do if SOLUTION?(*plan*) then return *plan* $S_{need}, c \leftarrow$ SELECT-SUBGOAL(*plan*) CHOOSE-OPERATOR(*plan,operators,S*_{need}, c) RESOLVE-THREATS(*plan*) end loop end function

function SELECT-SUBGOAL(*plan*) returns S_{need} , cpick a plan step S_{need} from STEPS(*plan*) with a precondition c that has not been achieved return S_{need} , cend function

POP algorithm, continued

```
procedure CHOOSE-OPERATOR( plan, operators, S_{need}, c)
choose a step S_{add} from operators or STEPS(plan) that has c as an effect
if there is no such step then fail add the causal link S_{add} \leftarrow^c S_{need} to LINKS(plan)
add the ordering constraint S_{add} \prec S_{need} to ORDERINGS(plan)
if S_{add} is a newly added step from operators then
add S_{add} to STEPS(plan)
add Start \prec S_{add} \prec Finish to ORDERINGS(plan)
end if
end procedure
```

POP algorithm, continued

```
procedure RESOLVE-THREATS( plan )
for each S_{threat} that threatens a link S_i \leftarrow^c S_j in LINKS(plan) do
choose either
Demotion: Add S_{threat} \prec S_i to ORDERINGS(plan)
Promotion: Add S_j \prec S_{threat} to ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end for each
end procedure
```

Clobbering

• A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Properties of POP

- Nondeterministic algorithm: backtracks at *choice* points on failure:
 - choice of Sadd to achieve Sneed
 - choice of demotion or promotion for clobberer
 - selection of Sneed is irrevocable
- POP is sound, complete, and systematic (no repetition)
- Extensions for disjunction, universals, negation, conditionals
- Can be made efficient with good heuristics derived from problem description
- Particularly good for problems with many loosely related subgoals

Example

+ several inequality constraints

Example (2)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Example (3)

Example (4)

Example (5)

PutOn(A,B) clobbers CI(B) => order after PutOn(B,C)

PutOn(B,C) clobbers CI(C) => order after PutOnTable(C)

