
Planning
CIS 32

Functionalia

Today:

Planning (Brief Overview Again)

STRIPS Planning

Partial-Order Planning

HW 4 is Up - Quesitons?

It is due in one (1) week, and is comprised of the Neural Network
Problem; and a Planning Problem.

What is planning?

• Key problem facing agent is deciding what to do.

• We want agents to be taskable: give them goals to achieve, have them
decide for themselves how to achieve them.

• Basic idea is to give an agent:

– representation of goal to achieve;

– knowledge about what actions it can perform; and

– knowledge about state of the world;

and to have it generate a plan to achieve the goal.

• Essentially, this is

automatic programming

High Level Box View of a Planner

• Question: How do we represent. . .

– goal to be achieved;

– state of environment;

– actions available to agent;

– plan itself.

Language expressive enough to describe a wide variety of problems.

Language restrictive enough to allow efficient operation over them.

STRIPS Language (using First Order Logic).

STandford Research Institute Problem Solver.

Blocks World

• We’ll illustrate the techniques with reference to the blocks world.

• Contains a robot arm, 3 blocks (A, B and C) of equal size, and a table-
top.

• Initial state:

• To represent this environment, need an ontology

On(x, y) obj x on top of obj y

OnTable(x) obj x is on the table

Clear(x) nothing is on top of obj x

Holding(x) arm is holding x

• Here is a first-order logic representation of the blocks world described
above:

• Uses ground literals (function-free)

not Clear(x,y), or Clear(OnTopOf(B))

• Use the closed world assumption: anything not stated is assumed to be
false

Clear(A)
On(A,B)
OnTable(B)
OnTable(C)
Clear(C)

• A goal is represented as a first-order logic formula. (Conjunction of
positive ground literals)

• Here is a goal:

• Which corresponds to the state:

• Actions are represented using a technique that was developed in the
STRIPS planner.

OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

• Each action has:

– a name

• which may have arguments;

– a pre-condition list

• list of facts which must be true for action to be executed;

– a delete list

• list of facts that are no longer true after action is performed;

– an add list

• list of facts made true by executing the action.

Each of these may contain variables

Stack

• Example 1:

The stack action occurs when the robot arm places the object x it is
holding is placed on top of object y.

Stack(x, y)

pre Clear(y) ∧ Holding(x)

del Clear(y) ∧ Holding(x)

add ArmEmpty ∧ On(x, y)

Unstack

• Example 2:

The unstack action occurs when the robot arm picks an object x up from
on top of another object y.

UnStack(x, y)

pre On(x, y) ∧ Clear(x) ∧ ArmEmpty

del On(x, y) ∧ ArmEmpty

add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

Pickup

• Example 3:

The pickup action occurs when the arm picks up an object x from the
table.

Pickup(x)

pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty

del OnTable(x) ∧ ArmEmpty

add Holding(x)

Putdown

• Example 4:

The putdown action occurs when the arm places the object x onto the
table.

PutDown(x)

pre Holding(x)

del Holding(x)

add OnTable(x) ∧ ArmEmpty

• What is a plan?

A sequence (list) of actions, with variables replaced by constants.

Constants being: A, B, C, Floor

• So, to get from:

• We need the set of actions:

Unstack(A)
Putdown(A)
Pickup(B)
Stack(B,C)
Pickup(A)
Stack(A,B)

• In “real life”, plans contain conditionals (IF .. THEN...) and loops
(WHILE... DO...), but most simple planners cannot handle such
constructs — they construct linear plans.

• Simplest approach to planning: means-ends analysis.

• Involves backward chaining from goal to original start state.

1. Start by finding an action that has goal as post-condition.
 (Assume this is the last action in plan.)

2. Then figure out what the previous state would have been.

3. Try to find action that has this state as post-condition.

• Recurse until we end up (hopefully!) in original state

function plan(

d : WorldDesc, // initial env state
g : Goal, // goal to be achieved
p : Plan, // plan so far
A : set of actions // actions available)

1. if d g then
2. return p
3. else
4. choose a in A such that
5. add(a) g and
6. del(a) g
7. set g = pre(a)
8. append a to p
9. return plan(d, g, p,A)

All positive effects of a that appear in g are deleted.
Each precondition literal of a is added, unless it already appears.

How does this work on the previous example?

How does this work on the previous example?

Start
OnTable(C)
OnTable(B)

On(A,B)
Clear(A)
Clear(C)

Clear(Floor)
ArmEmpty

Goal
OnTable(C)

On(B,C)
On(A,B)
Clear(A)

Clear(Floor)
ArmEmpty

Start
OnTable(C)
OnTable(B)

On(A,B)
Clear(A)
Clear(C)

Clear(Floor)
ArmEmpty

Goal
OnTable(C)

On(B,C)
On(A,B)
Clear(A)

Clear(Floor)
ArmEmpty

Stack(x, y)

pre Clear(y) ∧ Holding(x)

del Clear(y) ∧ Holding(x)

add ArmEmpty ∧ On(x, y)

UnStack(x, y)

pre On(x, y) ∧ Clear(x) ∧ ArmEmpty

del On(x, y) ∧ ArmEmpty

add Holding(x) ∧ Clear(y)

Pickup(x)

pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty

del OnTable(x) ∧ ArmEmpty

add Holding(x)

PutDown(x)

pre Holding(x)

del Holding(x)

add OnTable(x) ∧ ArmEmpty

Start
OnTable(C)
OnTable(B)

On(A,B)
Clear(A)
Clear(C)

Clear(Floor)
ArmEmpty

Goal
OnTable(C)

On(B,C)
On(A,B)
Clear(A)

Clear(Floor)
ArmEmpty

Stack(x, y)

pre Clear(y) ∧ Holding(x)

del Clear(y) ∧ Holding(x)

add ArmEmpty ∧ On(x, y)

UnStack(x, y)

pre On(x, y) ∧ Clear(x) ∧ ArmEmpty

del On(x, y) ∧ ArmEmpty

add Holding(x) ∧ Clear(y)

Pickup(x)

pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty

del OnTable(x) ∧ ArmEmpty

add Holding(x)

PutDown(x)

pre Holding(x)

del Holding(x)

add OnTable(x) ∧ ArmEmpty

• This algorithm not guaranteed to find the plan. . .

. . . but it is sound: If it finds a plan, that plan is correct.

• Some problems:

– negative goals;

– maintenance of goals(Frame Problem, Clobbering);

– conditionals & loops;

– exponential search space;

The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of performing
an action?

If I pick up a block, does my hair color stay the same?

• One solution is to write frame axioms.

Here is a frame axiom, which states that CHIPP’s hair color is the same in
all the situations (symbolized by s and s’) that result from performing
Pickup(x) in situation s as it is in s′.

∀s, s′. Result(CHIPP, Pickup(x), s) = s′ ⇒

HairColor(CHIPP, s) = HairColor(CHIPP, s′)

STRIPS Planning

• Stating frame axioms in this way is unfeasible for real problems.

• (Think of all the things that we would have to state in order to cover
all the possible frame axioms).

• STRIPS solves this problem by assuming that everything not explicitly
stated to have changed remains unchanged.

• The price we pay for this is that we lose the advantages of using logic:

– Semantics goes out of the window

• However, more recent work has effectively solved the frame problem
(using clever second-order approaches).

Second-order Logic (BTW) - involved quantification across different sets

Sussman’s Anomaly

• Consider we have the following initial state and goal state:

• What operations will be in the plan?

• Clearly we need to Stack B on C at some point, and we also need to
Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the UnStack first, and the Stack B on C, but
the planner has no way of knowing this.

• It also has no way of “undoing” a partial plan if it leads into a dead end.

• So if it chooses to Stack(A,C) after the Unstack, it is sunk.

• This is a big problem with linear planners

• How could we modify our planning algorithm?

• Modify the middle of the algorithm to be:

1. if d g then
2. return p
3. else
4. choose a in A such that
5. add(a) g and
6. del(a) g
6a. no clobber(add(a), del(a), rest of plan)
7. set g = pre(a)
8. append a to p
9. return plan(d, g, p,A)

• We do this with partial-order planning.

Partial Order Planning

• The answer to the problem is to use partial order planning.

• Basically this gives us a way of checking before adding an action to the
plan that it doesn’t mess up the rest of the plan.

• The problem is that in this recursive process, we don’t know what the
rest of the plan is.

• Need a new representation partially ordered plans.

Representation

StartStartStart

Total-Order Plans:Partial-Order Plan:

Start

Left
Sock

Finish

Start

Finish

Right
Sock

Start

Left
Sock

FinishFinish

Left
Sock

Finish

Right
Sock

Finish

Right
Sock

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Right
Sock

Right
Shoe

Left
Sock

Left
Shoe

Finish

Left
Sock

Left
Sock

Right
Sock

Right
Shoe

Right
Sock

Left
Shoe

Right
Shoe

Left
Shoe

Right
Shoe

Left
Shoe

Left
Sock

Right
Sock

Left
Shoe

Right
Shoe

Left
Shoe

Right
Shoe

Left
Shoe

Right
Shoe

Representation

Partially ordered plans

• Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of another

– temporal ordering between pairs of steps

• Open condition = precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier step and no
possibly intervening step undoes it

Plan Construction

Plan construction (2)

Plan construction (3)

Planning process

• Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts

• Gradually move from incomplete/vague plans to complete, correct
plans

• Backtrack if an open condition is unachievable or if a conflict is
unresolvable

POP algorithm

POP algorithm, continued

POP algorithm, continued

Clobbering

• A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Properties of POP

• Nondeterministic algorithm: backtracks at choice points on failure:

– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable

• POP is sound, complete, and systematic (no repetition)

• Extensions for disjunction, universals, negation, conditionals

• Can be made efficient with good heuristics derived from problem
description

• Particularly good for problems with many loosely related subgoals

Example

Example (2)

Example (3)

Example (4)

Example (5)

