
Better Search
Improved Uninformed Search

CIS 32

Functionally

Today:

Wrap up Basic Search

Improvements on Uninformed Search

PROJECT 1: Lunar Lander Game
- Demo + Concept
- Open-Ended: No One Solution
- Menu of Point Options
- Get Started NOW!!!
- Demo After Spring Break

Re-Cap on Problem Solving Through Search

Agents that solve problems through Search (as opposed to Behavior-
Based Agents)

Goal is given in the agent specification

Actions/Operations are abstracted

State-Space is formalized (i.e. modeled for the agent to search)

State-Space Modeled as a Tree Structure

Uninformed Search:

• Breath First Search

• Uniform Search

• Depth First Search

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step

— gives tree of depth 2.

• Then expand all nodes that resulted from previous step, and so on.

• Expand nodes at depth n before level n + 1.

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step

— gives tree of depth 2.

• Then expand all nodes that resulted from previous step, and so on.

• Expand nodes at depth n before level n + 1.

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step

— gives tree of depth 2.

• Then expand all nodes that resulted from previous step, and so on.

• Expand nodes at depth n before level n + 1.

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step

— gives tree of depth 2.

• Then expand all nodes that resulted from previous step, and so on.

• Expand nodes at depth n before level n + 1.

Breadth-first Search

• Advantage: guaranteed to reach a solution if one exists.

• If all solutions occur at depth n, then this is good approach.

• Disadvantage: time taken to reach solution!

• Let b be branching factor — average number of operations that may be
performed from any level.

• If solution occurs at depth d, then we will look at

nodes before reaching solution — exponential.

• How else can we search the State-Space?

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from first step, and expand it.

• Pick one of nodes resulting from second step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

Depth First Search

/* Depth first search */

agenda = initial state;

while agenda not empty do {

pick node from front of agenda;

new nodes = apply operations to state;

if goal state in new nodes then {

return solution;

}

put new nodes on FRONT of agenda;

}

(Agenda = OPEN List = the “Fringe” = Frontier)

Depth-First Search

Disadvantages:

• Depth first search is not guaranteed to find a solution if one exists.

• Solution found is not guaranteed to be the best.

Advantages:

• However, if it does find one, amount of time taken is much less than
breadth first search.

• Memory requirement is much less than breadth first search. (Linear
space requirement)

Performance Measures for Search

• Completeness:

Is the search technique guaranteed to find a solution if one exists?

• Time complexity:

How many computations are required to find solution?

• Space complexity:

How much memory space is required?

• Optimality:

How good is a solution going to be w.r.t. the path cost function.

• An Optimal Solution is called admissible.

Improvements on Depth-First and Breadth-First

• Breadth-first search is complete but expensive.

• Depth-first search is cheap but incomplete

• Can’t we do better than this?

• Basic search (depth 1st, breadth 1st) can be improved:

• Improvements:

– depth limited search;

– iterative deepening.

• But we will see that even with such improvements, search is hopelessly
unrealistic for real problems.

Algorithmic Improvements

• Are then any algorithmic improvements we can make to basic search
algorithms that will improve overall performance?

• Try to get optimality and completeness of breadth 1st search with space
efficiency of depth 1st.

• Not too much to be done about time complexity :-(

Depth Limited Search

• Depth first search has some desirable properties — space complexity.

• But if wrong branch expanded (with no solution on it), then it won’t
terminate.

• Introduce a depth limit on branches to be expanded.

• Don’t expand a branch below this depth.

Depth Limited Algorithm

depth limit = max depth to search to;

agenda = initial state;

while agenda not empty do

take node from front of agenda;

new nodes = apply operations to node; // Expanding the node

if goal state in new nodes then {

return solution;

}

if depth(node) < depth limit then {

add new nodes to front of agenda;

}

}

(Agenda = OPEN List = the “Fringe” = Frontier)

8-Puzzle Example

• For the 8-puzzle set up:

• Search tree (with State Symbolizing the Nodes)

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

8-Puzzle Search (Depth Limited at Level 5)

Chronological Backtracking

• Hit the depth bound of level 5, we don’t add any more nodes to the
agenda.

• Then we pick the next node off the agenda. (Node 7 in this case)

• This has the effect of moving the search back to the last node above
depth limit that that is “partially expanded”.

• This is known as chronological backtracking.

• The effect of the depth limit is to force the search of the whole state
space down to the limit.

• We get the completeness of breadth-first (down to the limit), with the
space cost of depth first.

Iterative Deepening

• Depth-limited search is not complete:

• If we choose a max-depth such that the shortest-path solution is
longer.

• We choose a max-depth deeper than the shortest goal node, and
then suffer the consequences of depth-first search and hit a less
optimal goal first.

• Complete Solution: Iterative deepening

• Basic idea repeat depth-limited-search for all depths until solution:

– depth-limited-search (depth = 1) ; if solution found, return it;

– otherwise depth-limited-search (depth = 2); if solution found, return it;

– otherwise depth-limited-search (depth = n); if solution found, return it;

– otherwise, . . .

Iterative Deepening Search (Algorithm)

depth limit = 1;

repeat {

 // depth_limited_search is a sub-routine

result = depth_limited_search(

max depth = depth limit;

agenda = initial node;

);

if result contains goal then {

return result;

}

depth limit = depth limit + 1;

} until false; /* i.e., forever */

Depth-Limited Search

Efficiency of Iterative Deepening
Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we need to
regenerate the tree to depth d − 1.

Isn’t this inefficient?

Tradeoff time for memory.

In general we might take a little more time, but we save a lot of memory.

Number of Nodes Generated for breadth-first search to level d:

...

Iterative Deepening

In contrast a complete depth-limited search to level j:

(This is just a breadth-first search to depth j.)

In the worst case, then we have to do this to depth d, so expanding:

For large d:

So for high branching and relatively deep goals we do a small amount
more work.

Example:

• Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes, with
memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be searched,
with memory requirement only 50 nodes.

Takes 11% longer in this case.

8-puzzle Example (with Iterative Deepening)

For the 8-puzzle setup as:

What would iterative deepening search look like?

Well, it would explore the search space, (draw it on the board!)

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

Expanded Search Space

• States would be expanded in the order:

1. 1

2. 1, 2, 3, 4

3. 1, 2, 5, 3, 6, 7, 8, 4, 9.

4. 1, 2, 5, 10, 11, 3, 6, 13, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 19.

5. . . .

• Note that these are the states visited, not the nodes on the agenda
(remember depth-first search has at most bd nodes on the agenda).

Bi-directional Search

• Suppose we search from the goal state backwards as well as from initial
state forwards.

• Involves determining predecessor nodes to goal, which works well in
navigation problems (i.e. driving from Boston to New York).

More difficult to use in problems with implicit goals (i.e. Checkmate(X))

• Rather than doing one search of , we do two searches.

• Much more efficient.

GoalStart

Bi-Directional Search

• Example:

• Suppose b = 10, d = 6.

• Breadth first search will examine ___ nodes.

• Bi-directional search will examine ___ nodes.

• Can combine different search strategies in different directions.

• For large d, is still impractical!

Bi-Directional Search

• Example:

• Suppose b = 10, d = 6.

• Breadth first search will examine = 1,000,000 nodes.

• Bi-directional search will examine + =1,000 + 1,000 nodes.

• Can combine different search strategies in different directions.

• For large d, is still impractical!

Summary

• This lecture has looked at some more efficient techniques than breadth
first and depth first search.

– depth-limited search;

– iterative-deepening search; and

– bidirectional search.

• These all improve on depth-first and breadth-first search.

• However, all fail for big enough problems (too large state space).

• Next lecture, we will look at approaches that cut down the size of the
state-space that is searched.

