
Heuristic Search
Informed Search

CIS 32

Functionally

Today:

Heuristic (Informed) Search

From Improvements to Uninformed Search...

• More advanced problem solving techniques:

– Depth limited search

– Iterative deepening

– Bidirectional search

• These improved on basic techniques like breadth-first and depth-first
search.

• Still aren’t powerful enough to give solutions for realistic problems.

• Are there more improvements we can make?

(What if we include state-space specific knowledge to our search
process?)

... to Informed Search

Aims of this lecture:

• To show how applying some knowledge of the problem can help.

• Introduce heuristics — rules of thumbs

• Introduce heuristic search: rules of thumbs which dictate which node to
expand on the fringe

– uniform-cost search

– greedy search

– A* search

Heuristic (Informed) Search

• Whatever search technique we use, exponential time complexity.

• Tweaks to the algorithm (depth-limited etc...) will not reduce this to
polynomial.

• We need problem specific knowledge to guide the search.

• Simplest form of problem specific knowledge is heuristic.

• Usual implementation in search is via an evaluation function which
indicates desirability of expanding node.

Uniform Cost Search

• Recall we have a path cost function (g(x)),

which gives cost to each path.

• Why not expand the cheapest path first?

• Intuition: cheapest is likely to be best!

Uniform Cost Algorithm

agenda = initial state;

while agenda not empty do

{

take node from agenda such that

g(node) = min { g(n) | n in agenda}

new nodes = apply operations to node;

if goal state in new nodes then {

return solution;

}

else add new nodes to agenda

}

Uniform Cost Search

• Uniform cost search guaranteed to find cheapest solution assuming
path costs grow monotonically.

• In other words, adding another step to the solution makes it more
costly.

• If path costs don’t grow monotonically, then exhaustive search is
required.

Depth in Search

Total Path Cost

monotonic growth

NOT monotonic

8-puzzle Example

Search Space is:

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

Order of Expansion

• States would be expanded in the order:

1. 1

2. 2, 3, 4

3. 5, 6, 7, 8, 9

4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

5. . . .

• Note that this is just like breadth first search (because the path costs are
all the same).

up/down moves cost 2 and
left/right moves cost 1

1 1
2

2
1 1 22

2 1 2 2 1 1 2 2 1 2

1 1
22 1 1 2 1 1 1 1

2 2 1

1
2

1
1

2
2

1
1

1
2

2
1

1
2

States would be expanded in the order:

1. 1

2. 2, 3, 4

3. 5

4. 9

5. 6, 7, 8

6. . . .

Uniform Cost Search
Costs are associated to traversing the nodes (i.e. doing an operation)

Take into consideration the cost of the operation.

Explore nodes according to a uniform cost “depth”

Every operation having a cost of 1 is breath-first search.

1 2

1 11 2

Operation costs can be thought of as contours

Greedy Search

• Most heuristics estimate cost of cheapest path from node to solution.

• We have a heuristic function,

which estimates the distance from the node to the goal.

• Example: In route finding, heuristic might be straight line distance
from node to destination.

• Heuristic is said to be admissible if it never overestimates cheapest
solution.

Admissible = optimistic.

• Greedy search involves expanding node with cheapest expected cost to
solution.

Greedy Search Algorithm

agenda = initial state;

while agenda not empty do

{

take node from agenda such that

h(node) = min { h(n) | n in agenda}

new nodes = apply operations to node;

if goal state in new nodes then {

return solution;

}

else add new nodes to agenda

}

Greedy Search

• Greedy search finds solutions
quickly.

• Doesn’t always find best.

• Susceptible to false starts.

– Chases good looking options
that turn out to be bad.

• Only looks at current node.
Ignores past!

• Also myopic (shortsighted).

Heuristics for 8-puzzle
• For the 8-puzzle one good heuristic is:

– count tiles out of place.

• Another is:

– Manhattan blocks’ distance

• The latter works for other problems as well:

– Robot navigation.

2 8 3
1 6 4
7 5

1 2 3
8 4
7 6 5

Heuristics for 8-puzzle
• For the 8-puzzle one good heuristic is:

– count tiles out of place.

• Another is:

– Manhattan blocks’ distance

• The latter works for other problems as well:

– Robot navigation.

2 8 3
1 6 4
7 5

1 2 3
8 4
7 6 5

h = 6

h = 1+2+1+1+1 = 6

(equal by coincidence only)

A* Search

• A* is very efficient search strategy.

• Basic idea is to combine

• We look at the cost so far (past) and the estimated cost to goal (future).

• Gives heuristic f:

where

– g(n) is path cost of n;

– h(n) is expected cost of cheapest solution from n.

• Aims to minimize overall cost.

uniform cost search
and

greedy search.

A* search

agenda = initial state;

while agenda not empty do

{

take node from agenda such that

f(node) = min { f(n) | n in agenda}

where f(n) = g(n) + h(n)

new nodes = apply operations to node;

if goal state in new nodes then {

return solution;

}

else add new nodes to agenda

}

8-puzzle : A* Search Heuristic Function

• Considering the 8-puzzle (for the last time :-):

• We combine:

– Path cost function g(n):

 number of moves.

– Heuristic function h(n):

 tiles out of places.

• This gives the following search.

g(n) h(n)

The optimality of A*

• A* is optimal in precise sense — it is guaranteed to find a minimum
cost path to the goal.

• There are a set of conditions under which A* will find such a path:

1. Each node in the graph has a finite number of children.

2. All arcs have a cost greater than some positive .

3. For all nodes in the graph h(n) always underestimates the true
distance to the goal.

• The key here is number 3.— the notion of admissibility.

• We will express this by saying a heuristic h() is admissible if.

More informed search

IF two versions of A*, and use different functions and ,

AND

 , for all non-goal nodes,

THEN

we say that is more informed than

The better informed A* is, the less nodes it has to expand to find the
minimum cost path.

• As an example of ”more informed” consider the 8-puzzle:

– tiles out of place; and

– Manhattan blocks distance.

• We need to underestimate to ensure admissibility.

• But, the closer the estimate, the easier it is to reject nodes which are
not on the optimal path.

• This means less nodes need to be searched.

Iterative deepening A*

• When we do heuristic search, we search some portion of the full
search space (i.e. ”Focussed breadth first search”).

• So, we can still hit intractability.

• Adapting iterative deepening can help us.

• Instead of a depth limit, we impose a cost limit, and do a depth first
search until it is exceeded.

• Then we backtrack, and extend the limit if we don’t find the goal.

Basic Algorithm of IDA*

• The initial cost cut off is set to

• This is just the estimated cost of finding a solution (g = 0)

• This will never overestimate the cost, so is a good start point.

• If this cost-limit does not provide a solution, the next cost limit:

• (If the heuristic is a good one), the cost of the cheapest path to the
goal will be the lowest of an unexpanded node.

• So we set the new cost bound to this.

• This, then is iterative deepening A* (IDA*).

Summary

• This lecture has looked at some techniques for refining the search space:

– uniform cost search;

– greedy search; and

– A* search.

• When these work they explore just the relevant part of the search space.

• There are also techniques that go further than those we have studied.

(Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving. 1984)

• There are three directions we will take from here:

– Adversarial search

– Learning the state space.

– Adding in more knowledge about the domain.

