
Adversarial Search
Game Playing

CIS 32

Functionally

Today:

Adversarial Search (Game Playing)

HW 1 is Up on the Site. Questions? (Paper, PDF, or E-mail submission)

Adversarial Search

Why Search?

• One of the reasons we use search in AI is to help agents figure out
what to do.

• Considering how sequences of actions can be put together allows the
agent to plan.

So far, an agent that search can figure out what to do when:

– It knows exactly how the world is;

– Each action only has one outcome; and

– The world only changes when the agent makes it change.

2 Agent Search

• In other words we can plan when the world is:

– Accessible;

– Deterministic; and

– Static

• Obviously these are unrealistic simplifcations.

• Here we will consider how to handle one kind of dynamism:

– Other agents messing with the world.

• (Later lectures will look at other kinds of complication.)

Consider a set up where there are two agents in the world:

Assumption: Agents take turns when they move.

• One typical kind of scenario which fits this profile is a two-person
game.

• This Grid-World Example could be moves in a chess endgame:

• Consider that White wants to be in the same cell as Black.

• Black wants to avoid this.

• Agent Motivation: What each agent wants is a move that
guarantees success not matter what the other agent does.

• Agent Point of View: Usually all they can find is a move that
improves things from their point of view.

White wants to be in the same cell as Black.

Computers and Games

• This example is a two person, perfect information, zero sum game.

• Perfect information:

– Both players know exactly what the state of the game is.

• Zero sum:

– What is good for one player is bad for the other.

• This is also true of chess, draughts, go, othello, connect 4, . . .

Two Person, Perfect Information, Zero-Sum

• These games are relatively easy to study at an introductory level.

• They have been studied just about as long as AI has been a subject.

• Some games are easily “solved”:

– Tic-Tac-Toe

• Others have held out until recently.

– Checkers (CHINOOK - Univ. of Alberta, Canada)

– Chess (DEEP BLUE - IBM)

• Yet others are far from being mastered by computers.

– Go

• Chance provides another complicating element.

– Risk, Monopoly

State Space Representation

Games State spaces are iconic and have natural representations:

• State space operators are player’s moves.

• Search trees can be built much as before.

• However, we use different techniques to choose the optimal moves.

O

X X

O

O
X X

O

X O
X X

O

O
X X X

O

Minimax Procedure

• Typically we name the two players MAX and MIN.

• MAX moves first, and we want to find the best move for MAX.

• Since MAX moves first, even numbered layers are the ones where
MAX gets to choose what move to make.

• The first node is on the zeroth layer.

• We call these “MAX nodes”.

• “Min nodes” are defined similarly.

• A ply of ply-depth k are the nodes at depth 2k and 2k + 1.

• We usually estimate, in ply, the depth of the “lookahead” performed by
both agents.

O
X X

O

X O
X X

O

O
X X X

O

O
X X X

O

X O
X X

O

O
X X X

O

O
X X X

O

X O
X X

O

O
X X X

O

O
X X X

O

X O
X X

O

O
X X X

O

O
X X X

O

X O
X X

O

O
X X X

O

O
X X X

O

depth 0

depth 1

depth 2

depth 3

ply 0

ply 1

2 Ply Look-a-head

MAX

MAX

MIN

MIN

• We can’t search the whole tree:

– Chess: 10^40 nodes

– 10^22 centuries to build search tree.

• So just search to a limited horizon (like depth-bounded).

• Then evaluate (using some heuristic) the leaf nodes.

• Then extract the best move at the top level.

• The Question now becomes: How do we do this (and how do we take
into account the fact that MIN is also trying to win)?

• We use the minimax procedure.

Search Scope

MAX’s Desires

• Assume our heuristic gives nodes high positive values if they are good
for MAX

• And low values if they are good for MIN (can be negative even!).

• Now, look at the leaf nodes and consider which ones MAX wants:

– Ones with high values.

• MAX could choose these nodes if it was his turn to play.

• So, the value of the MAX-node parent of a set of nodes is the max of all
the child values.

MIN’s Desires

• Similarly, when MIN plays she wants the node with the lowest value.

• So the MIN-node parent of a set of nodes gets the min of all their
values.

• We back up values until we get to the children of the start node, and
MAX can use this to decide which node to choose.

• There is an assumption (another!) which is that the evaluation function
works as a better guide on nodes down the tree than on the direct
successors of the start node.

• Let’s look at a concrete example—Tic-Tac-Toe.

Evaluation Function for Crosses

• Let MAX play crosses (X) and go first.

• Breadth-first search to depth 2.

• evaluation function (our heuristic) e(p):

where

, ,
, ,

Evaluation

Scores?

Evaluation

Scores? 6 - 4 = 2

Evaluation

Scores? 6 - 4 = 2

• We also use symmetry to avoid having to generate loads of successor
states, so are all equivalent:

• So, run the depth-2 search, evaluate, and back up values of the leaf
nodes.

MAX’s Best Move

• Unsurprisingly (for anyone who ever played Tic-Tac-Toe as a kid):

Is the best move.

• So MAX moves and then MIN replies, and then MAX searches again:

MAX’s Second Move

Second Move

• Here there are two equally good best moves.

• So we can break the tie randomly.

• Then we let MIN move and do the search again.

Alpha-Beta search

• Minimax works very neatly, but it is inefficient.

• The inefficiency comes from the fact that we:

– Build the tree FIRST,

– THEN back up the values

• If we combine the two we get massive savings in computation.

• How do we manage this?

• Consider the last move in our MINIMAX example:

• Well, when we get to node A, we don’t have to expand any further.

 - Since we now that MIN will choose the winning game.

• So we save the evaluation of B, C and D.

• We also don’t have to search any of the nodes below these nodes.

 - MAX will not find a better path/move below the MIN node..

• It also works when we don’t have a winning move for MIN.

• Consider the following (earlier) stage of Tic-Tac-Toe.

Cut-off at node A

Alpha-Beta Pruning

• Node A has backed-up value -1.

• Thus the start node cannot have a lower value than -1.

• This is the alpha value.

• Now let’s go on to B and C.

• Since C has value -1, B cannot have a greater value than -1.

• This is the beta value.

• In this case, because B cannot ever be better than A, we can stop the
expansion of B’s children.

Earlier Stage in Crosses

• In general:

– Alpha values are associated with MAX nodes and can never
decrease.

– Beta values are associated with MIN nodes and can never
increase.

• Thus we can stop searching below:

– Any MIN node with a beta value less than or equal to the alpha
value of one of its MAX ancestors.

• The backed up value of this MIN can be set to its beta value.

– Any MAX node with an alpha value greater than or equal to any of
its MIN node ancestors.

• The backed up value of this MAX node can be set to its alpha
value.

Alpha-Beta Values Computed

• We compute the values as:

– Alpha: current largest final backed-up value of successors.

– Beta: current smallest final backed-up value of successors.

• We keep searching until:

1. we meet the “stop search” cut-off rules, or

2. we have backed-up values for all the successors of the start node.

• Doing this always gives the same best move as full minimax.

• However, often (usually) this alpha-beta approach involves less
searching.

Horizon Effects

• How do we know when to stop searching?

• What looks like a very good position for MAX might be a very bad
position just over the horizon.

• Stop at quiescent nodes (value is the same as it would be of you looked
ahead a couple of moves).

• Can be exploited by opponents; pushing moves back behind the
horizon.

• A similar problem occurs because we assume that players always make
their best move:

– “Bad” moves can mislead a minimax-style player.

Games of chance

• How do we handle dice games?

• A neat trick is to model this as a another player DICE.

• We back up values in the usual way, maximizing for MAX and
minimizing for MIN.

• For DICE moves, we back up the expected (weighted average) of the
moves.

• For a single die, the weight is 1/6.

• For more complex situations we use whatever probability distribution
is indicated.

Summary

• We have looked at game playing as adversarial state-space search.

• Minimax search is the basic technique for finding the best move.

• Alpha/beta search gives greater efficiency.

• Games of chance can be handled by adding in the random player DICE.

Summary

• This lecture has looked at some techniques for refining the search space:

– uniform cost search;

– greedy search; and

– A* search.

• When these work they explore just the relevant part of the search space.

• There are also techniques that go further than those we have studied.

(Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving. 1984)

• There are three directions we will take from here:

– Adversarial search

– Learning the state space.

– Adding in more knowledge about the domain.

