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Functionally

Today:

Adversarial Search (Game Playing)

HW 1 is Up on the Site.  Questions?  (Paper, PDF, or E-mail submission)



Adversarial Search

Why Search?

• One of the reasons we use search in AI is to help agents figure out 
what to do.

• Considering how sequences of actions can be put together allows the 
agent to plan.

So far, an agent that search can figure out what to do when:

– It knows exactly how the world is;

– Each action only has one outcome;  and

– The world only changes when the agent makes it change.



2 Agent Search

• In other words we can plan when the world is:

– Accessible;

– Deterministic; and

– Static

• Obviously these are unrealistic simplifcations.

• Here we will consider how to handle one kind of dynamism:

– Other agents messing with the world.

• (Later lectures will look at other kinds of complication.)



Consider a set up where there are two agents in the world:

Assumption: Agents take turns when they move.



• One typical kind of scenario which fits this profile is a two-person 
game.

• This Grid-World Example could be moves in a chess endgame:

• Consider that White wants to be in the same cell as Black.

• Black wants to avoid this.

• Agent Motivation:  What each agent wants is a move that 
guarantees success not matter what the other agent does.

• Agent Point of View: Usually all they can find is a move that 
improves things from their point of view.



White wants to be in the same cell as Black.



Computers and Games

• This example is a two person, perfect information, zero sum game.

• Perfect information:

– Both players know exactly what the state of the game is.

• Zero sum:

– What is good for one player is bad for the other.

• This is also true of chess, draughts, go, othello, connect 4, . . .



Two Person, Perfect Information, Zero-Sum 

• These games are relatively easy to study at an introductory level.

• They have been studied just about as long as AI has been a subject.

• Some games are easily “solved”:

– Tic-Tac-Toe

• Others have held out until recently.

– Checkers (CHINOOK - Univ. of Alberta, Canada)

– Chess (DEEP BLUE - IBM)

• Yet others are far from being mastered by computers.

– Go

• Chance provides another complicating element.

– Risk, Monopoly 



State Space Representation

Games State spaces are iconic and have natural representations:

• State space operators are player’s moves.

• Search trees can be built much as before.

• However, we use different techniques to choose the optimal moves.
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Minimax Procedure

• Typically we name the two players MAX and MIN.

• MAX moves first, and we want to find the best move for MAX.

• Since MAX moves first, even numbered layers are the ones where 
MAX gets to choose what move to make.

• The first node is on the zeroth layer.

• We call these “MAX nodes”.

• “Min nodes” are defined similarly.

• A ply of ply-depth k are the nodes at depth 2k and 2k + 1.

• We usually estimate, in ply, the depth of the “lookahead” performed by 
both agents.
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• We can’t search the whole tree:

– Chess: 10^40 nodes

– 10^22 centuries to build search tree.

• So just search to a limited horizon (like depth-bounded).

• Then evaluate (using some heuristic) the leaf nodes.

• Then extract the best move at the top level.

• The Question now becomes: How do we do this (and how do we take 
into account the fact that MIN is also trying to win)?

• We use the minimax procedure.

Search Scope



MAX’s Desires

• Assume our heuristic gives nodes high positive values if they are good 
for MAX

• And low values if they are good for MIN (can be negative even!).

• Now, look at the leaf nodes and consider which ones MAX wants:

– Ones with high values.

• MAX could choose these nodes if it was his turn to play.

• So, the value of the MAX-node parent of a set of nodes is the max of all 
the child values.



MIN’s Desires

• Similarly, when MIN plays she wants the node with the lowest value.

• So the MIN-node parent of a set of nodes gets the min of all their 
values.

• We back up values until we get to the children of the start node, and 
MAX can use this to decide which node to choose.

• There is an assumption (another!) which is that the evaluation function 
works as a better guide on nodes down the tree than on the direct 
successors of the start node. 

• Let’s look at a concrete example—Tic-Tac-Toe.



Evaluation Function for Crosses

• Let MAX play crosses (X) and go first.

• Breadth-first search to depth 2.

• evaluation function (our heuristic) e(p):

where

, ,
, ,



Evaluation

Scores?



Evaluation

Scores? 6 - 4 = 2



Evaluation

Scores? 6 - 4 = 2

• We also use symmetry to avoid having to generate loads of successor 
states, so are all equivalent:

• So, run the depth-2 search, evaluate, and back up values of the leaf 
nodes.





MAX’s Best Move

• Unsurprisingly (for anyone who ever played Tic-Tac-Toe as a kid):

Is the best move.

• So MAX moves and then MIN replies, and then MAX searches again:



MAX’s Second Move



Second Move

• Here there are two equally good best moves.

• So we can break the tie randomly.

• Then we let MIN move and do the search again.





Alpha-Beta search

• Minimax works very neatly, but it is inefficient.

• The inefficiency comes from the fact that we:

– Build the tree FIRST, 

– THEN back up the values

• If we combine the two we get massive savings in computation.

• How do we manage this?

• Consider the last move in our MINIMAX example:





• Well, when we get to node A, we don’t have to expand any further.

   - Since we now that MIN will choose the winning game.

• So we save the evaluation of B, C and D.

• We also don’t have to search any of the nodes below these nodes.

  - MAX will not find a better path/move below the MIN node..

• It also works when we don’t have a winning move for MIN.

• Consider the following (earlier) stage of Tic-Tac-Toe.

Cut-off at node A



Alpha-Beta Pruning

• Node A has backed-up value -1.

• Thus the start node cannot have a lower value than -1.

• This is the alpha value.

• Now let’s go on to B and C.

• Since C has value -1,  B cannot have a greater value than -1.

• This is the beta value.

• In this case, because B cannot ever be better than A, we can stop the 
expansion of B’s children.



Earlier Stage in Crosses



• In general:

– Alpha values are associated with MAX nodes and can never 
decrease.

– Beta values are associated with MIN nodes and  can never 
increase.

• Thus we can stop searching below:

– Any MIN node with a beta value less than or equal to the alpha 
value of one of its MAX ancestors.  

•  The backed up value of this MIN can be set to its beta value.

– Any MAX node with an alpha value greater than or equal to any of 
its MIN node ancestors.

• The backed up value of this MAX node can be set to its alpha 
value.



Alpha-Beta Values Computed

• We compute the values as:

– Alpha: current largest final backed-up value of successors.

– Beta: current smallest final backed-up value of successors.

• We keep searching until:

1. we meet the “stop search” cut-off rules, or

2. we have backed-up values for all the successors of the start node.

• Doing this always gives the same best move as full minimax.

• However, often (usually) this alpha-beta approach involves less 
searching.



Horizon Effects

• How do we know when to stop searching?

• What looks like a very good position for MAX might be a very bad 
position just over the horizon.

• Stop at quiescent nodes (value is the same as it would be of you looked 
ahead a couple of moves).

• Can be exploited by opponents; pushing moves back behind the 
horizon.

• A similar problem occurs because we assume that players always make 
their best move:

– “Bad” moves can mislead a minimax-style player.



Games of chance

• How do we handle dice games?

• A neat trick is to model this as a another player DICE.

• We back up values in the usual way, maximizing for MAX and 
minimizing for MIN.

• For DICE moves, we back up the expected (weighted average) of the 
moves.

• For a single die, the weight is 1/6.

• For more complex situations we use whatever probability distribution 
is indicated.





Summary

• We have looked at game playing as adversarial state-space search.

• Minimax search is the basic technique for finding the best move.

• Alpha/beta search gives greater efficiency.

• Games of chance can be handled by adding in the random player DICE.



Summary

• This lecture has looked at some techniques for refining the search space:

– uniform cost search;

– greedy search; and

– A* search.

• When these work they explore just the relevant part of the search space.

• There are also techniques that go further than those we have studied.

(Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving. 1984)

• There are three directions we will take from here:

– Adversarial search

– Learning the state space.

– Adding in more knowledge about the domain.


