
Neural Networks
Introduction

CIS 32



Functionalia

Today:

Alpha-Beta Example

Neural Networks

Learning with T-R Agent (from before)

Office Hours (Last Change!) - Location Moved to 0317 N (Bridges Room)



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[-inf, +inf]

[-inf, 3]



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[-inf, +inf]

[-inf, 3]



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, +inf]

[3, 3]



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, +inf]

[3, 3] [-inf, 2]



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, +inf]

[3, 3] [-inf, 2]X beta = 2

alpha = 3

alpha <= beta



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, 14]

[3, 3] [-inf, 2] [-inf, 14]

no more children



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, 5]

[3, 3] [-inf, 2] [-inf, 5]

no more children



Alpha-Beta Example

MAX
MIN

direction of search

3 12 8 2 4 1 14 5 2

[3, 3]

[3, 3] [-inf, 2] [2, 2]



• Now we will look at neural networks, so called because they mimic the 
structure of the brain.

• However, they don’t have to be viewed in this way.

• We will start by thinking of them as an implementation of the kind of 
stimulus-response agents we looked at in the last lecture.

• They also provide us with our first taste of learning.

• The learning angle means we don’t have to figure out the model 
parameters for ourselves.

Neural Networks: Introduction

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse



Networks for Stimulus-Response

• Production systems can be easily implemented as computer programs.

• They may also be implemented directly as electronic circuits, as 
combinations of AND, OR, and NOT gates.

(Or as simulations of electronic circuits.)

• One useful kind of circuit is built of elements whose output is a 
nonlinear discrete function of a weighted combinations of its inputs.

• One kind of such unit is a threshold logic unit (TLU).

• This computes a weighted sum of its inputs, compares this to a 
threshold, and outputs 1 if the threshold is exceeded, 0 otherwise.



• The Boolean functions that can be computed using a TLU are called 
linearly separable functions.



• We can use TLUs to implement some Boolean functions, for instance a 
simple conjunction:

but we can’t implement an exclusive-OR this way.  
(Because an XOR is not linearly separable.  We will see...)



Boundary Following Agent (from before)

• We can implement the kind of function used for boundary following.



s2 s3 s4 s5 Activation

0 0 0 0 0(1)+0(1)+0(-2)+0(-2) = 0 0
0 0 0 1 0(1)+0(1)+0(-2)+1(-2) = -2 0

0 0 1 0 0(1)+0(1)+1(-2)+0(-2) = -2 0
0 0 1 1 0(1)+0(1)+1(-2)+1(-2) = -4 0

0 1 0 0 0(1)+1(1)+0(-2)+0(-2) = 1 1
0 1 0 1 0(1)+1(1)+0(-2)+1(-2) = -1 0

0 1 1 0 0(1)+1(1)+1(-2)+0(-2) = -1 0
0 1 1 1 0(1)+1(1)+1(-2)+1(-2) = -3 0

1 0 0 0 1(1)+0(1)+0(-2)+0(-2) = 1 1
1 0 0 1 1(1)+0(1)+0(-2)+1(-2) = -1 0

1 0 1 0 1(1)+0(1)+1(-2)+0(-2) = -1 0
1 0 1 1 1(1)+0(1)+1(-2)+1(-2) = -3 0

1 1 0 0 1(1)+1(1)+0(-2)+0(-2) = 2 1
1 1 0 1 1(1)+1(1)+0(-2)+1(-2) = 0 0

1 1 1 0 1(1)+1(1)+1(-2)+0(-2) = 0 0
1 1 1 1 1(1)+1(1)+1(-2)+1(-2) = -2 0



Simple TLU

• When we have a simple problem, it is possible that a single TLU can 
compute the right action.

• For this to happen we need there to be only two possible actions.

• For more complex problems (categories), we need a network of TLUs.

• These are often called neural networks because they have some 
similarity to the networks of neurons from which the brain is 
constructed.

• We can use such a network to implement a T-R program.



TISA Network

This network 
implements a set of 
production rules.



TISA Network
Inputs The input to 
each unit on the left 
is the 1 or 0 of the 
condition.

(This might be computed 
from the    by another 
circuit.)



TISA Network

Inputs The input to 
each unit from the 
top is a 1 or a 0 
Inhibit input from 
another Unit.



TISA Network
Each rule is a:

Test,  
Inhibit,  
Squelch,  
Act 

(TISA) circuit



TISA Network

TLU 
Computes 

Conjunction
TLU 

Computes 
Disjunction



TISA Behavior

• Inhibit is 0 when no rules above have a true condition.

• Test is 1 if the condition is true.

• If Test is 1 and Inhibit is 0, Act is 1.

• If either Test is 1 or Inhibit is 1 then Squelch is 1.

• If Squelch is 1 then every TISA below is Inhibited.



Learning in neural networks

• So far we have assumed that the mapping between stimulus and 
response was programmed by the agent designer.

• That is not always convenient or possible.

• When it isn’t, then it is possible to learn the right mapping.

• We will look at the case of learning the mapping for a single TLU.



Learning Process

• In brief, the learning procedure is as follows.

• We start with some set of weights:

– random;

– uniform

• Use a Training Set:  Run a set of inputs, and look at the outputs:

• If they don’t match, we alter the weights.

• We keep learning until the weights are right.



Back to the T-R Agent from Before

Feature Vector X, maps to a particular action, a:



Supervised Learning

• Now consider that we have a set of these     .

• Every element of     is an X (feature vector) with a corresponding a 
(action).

• This is a training set, and the set A of all a are called the classes or 
labels.

• The learning problem here is to find a way of describing the mapping 
from each member of     to the appropriate member of A.

• We want to find a function f(X) which is “acceptable”.

• That is it produces an action which agrees with the examples for as 
many members of the training set as possible.

• Because we have a set of examples to learn from, we call this
supervised learning.



Learning in a single TLU

• We train a TLU by adjusting the input weights.

• We assume that the vector     is numerical so that a weighted sum 
makes sense.

• The set of weights                        is denoted by vector 

• The threshold is written as   , so:

– Output is 1 if

– Output is 0 otherwise

• Dot Product:            is just a way of writing 



Hyperplane

• A TLU divides the space of feature vectors



• In two dimensions, the TLU defines a boundary (a line) between two 
parts of a plane (as in the previous picture).  

• In three dimensions, the TLU defines a plane which separates two parts 
of the space.

• In higher-dimension spaces the boundary defined by the TLU is a 
hyperplane.

• Whatever it is, it separates:

from



• Changing     moves the boundary relative to the origin.

• Changing      alters the orientation of the boundary.

• By convention we will assume that:

  

• Simplifies the maths :-)

• Arbitrary thresholds can be obtained by adding in an extra weight 
  n+1    which is  -0.

• The n + 1th element of the input vector is always 1.

• So, we don’t restrict ourselves by making this assumption.



Demonstrated in Logic Functions

AND 

W0 = 1.5 

W1 = 1 

W2 = 1 

OR 

W2 = 1 

W1 = 1 

W0 = 0.5 

NOT 

W1 = 1 

W0 = 0.5 

Logic Function Inputs

Bias-Weight (Input Hard-Wired to 1)

-



Linear Separability

Boundary is clear for AND and OR, but not for XOR.

(a) I1 and I2

1

0
0 1

I1

I2

(b) I1 or I2

0 1

1

0

I1

I2

(c) I1 xor I2

?

0 1

1

0

I1

I2

Output is 0

Output is 1



Summary: Neural Networks

• So, we introduced neural networks.

• We first considered them as an implementation of stimulus-response 
agents.

• In this incarnation we adjust the weights by hand.

• We also started thinking about how to learn the weights automatically.


