
More Neural Networks
From Single Perceptron to Multilayered Networks

CIS 32



Functionalia

Today:

Neural Network Example - Recap

Learning In Single Perceptron

Multi-Layered Networks

Office Hours Today 2 to 3pm - 0317 N (Bridges Room)



Recap

Output is 1 if

Output is 0 otherwise.



TISA Network
Each rule is a:

Test,  
Inhibit,  
Squelch,  
Act 

(TISA) circuit



Neural Network Example

Consider our Boundary Following Agent with the following Production 
System.

Draw out a TLU Network that encodes this rules set.



Least Squared Error

  A common way to train a TLU is through an error function.

  We define:

  where:

–            is the outcome we want for 

–            is the outcome we get.

  Often we write these functions as     and    

  We then minimize  



Gradient Descent

  - If       (the threshold) is rolled into the weights,  then the value of   
depends on the weights.

  (Since these determine the value of    )

  - We minimize by looking at the gradient of    with respect to the

weights. . .

  - . . . and then altering the weights to move    down the gradient.

  - Eventually this gradient descent will take us down to the

minimum value of    .



- The computation of     is complicated by the fact that its value

depends on all the       in     .

- Often it is easier to do the calculation for one     , adjust the

weights to move down the gradient, and then start over with

another       .

- Thus we do the learning incrementally, taking each member of  

in an order (called      ).

- The incremental version only ever approximates the result of

doing it “properly” (the batch way), but often it is a good

approximation.

- Here we will just look at the incremental version.

Batch vs. Incremental Training



- When we have a single input vector X, with output f and desired

output d, the error is:

- The gradient of     with respect to the weights is

and

Gradient of   



- Since     depends on W through

it follows that:

- Since:

it follows that:

Chain Rule

Derivative of s



- From our definition of error:

- Furthermore we can write:

and so:

- This seems to give us a way of working out what the gradient is.

- However, we have a problem.



- The problem is that the TLU output f , cannot be differentiated.

- Most times we vary s a little we get no change in f.

- Sometimes, though, we get a big change (from 0 to 1 or vice-versa).

- There are several ways around this.

• Ignore the threshold and set f = s.

• Replace the threshold function with something we can differentiate 
or otherwise find the gradient of.

f(s)



The Widrow-Hoff procedure

Let's try and adjust the weights so that:

• Every training vector labeled with a 1 produces a dot product of 1

•  Every training vector labeled with a 0 produces a dot product of 
-1.

Then, with

the incremental squared error is:

and



• This makes the gradient:

• If we want to then move the weight vector down the gradient, we can 
set the new value of the weight vector as:

• The factor of 2 is combined into the learning rate parameter c.

• As always this controls the speed of the adjustment by determining 
the fraction of X added to W.



• Whenever the error

is positive, then we add a fraction of the input into the weight.

• This increases            , and so decreases

• If the error is negative we subtract a fraction of the input and reverse 
the effect.

• Once we have found the best set of weights, we can go back to using 
the threshold function.



The generalized Delta procedure

• Another way to handle the threshold function is to replace it with 
something we can differentiate.



This function is known as a sigmoid:

With this function, we have the partial derivative:

Since

we have:



• This gives us another rule for changing weights:

• This compares to the Widrow-Hoff procedure as follows:

• In W-H, d is 1 or -1. In generalized Delta it is 1 or 0.

• In W-H, f is equal to s. In generalized Delta, f is the output of
the sigmoid function.

• Generalized Delta has the extra term 

• With the sigmoid,                  varies in value from 0 to 1.

• It has value 0 when f is 0 or 1.

• It has maximum value of 0.25 when f has value 0.5 (and the input to 
the sigmoid is 0).



• One can think of the sigmoid as a “fuzzy boundary”.

• When the input is a long way from the boundary,                 has a 
value close to 0.

• Thus hardly any adjustment is made to the weights.

• When the input is closer to the boundary, then weight changes are 
more significant.

• These changes are always to reduce the error.

• Once the weights are established, we can go back to using the step 
function.



A general approach

• Both these techniques have done the same thing.

• They have replaced something we couldn't find the slope of with 
something we could.

• This obviously trains the weights approximately.

• However, it seems that the approximation is often good enough.

• In any case, we are interested in performance on non-training 
examples.



The error-correction procedure

• Another approach keeps the original threshold function.

• We then forget about differentiation and just adjust the weights when 
the TLU gives a classification error.

• In other words we make a change when:

has value 1 or -1.

•   This time the weight change rule is:

(remember c is the learning rate parameter)

•   Just as before, the change tends to reduce the error.



• Comparing this with Widrow-Hoff, we note that both d and f are 
either 0 or 1.

• Whereas in W-H, d is 1 or -1 and f = s.

•   If there is a W that gives a correct output for all 

• Then after a  finite number of adjustments, this error-correction 
procedure will  find this weight vector.

• Thus the process will terminate, making no more weight adjustments.

• For nonlinearly separable sets of input vectors, the procedure will not 
terminate.



Network Structures

Two kinds of larger Neural Network Structures:

1. feed-forward networks - acyclic

• contains “hidden” layers and inputs.

2. recurrent networks - cyclic

• dynamic systems - with oscillations and chaotic behavior

• can exhibit short-term memory



Hidden Units

Activation of Unit 5 is based on the weighted outputs of Unit 3 and 4.

Units 3 and 4 represent the hidden units.

Activation depends on the Unit (can use the sigmoid function)

W 1, 3 

1, 4 W 

2, 3 W 

2, 4 W 

W 3, 5 

4, 5 W 

1 

2 

3 

4 

5 



Multi-layer

Layers are usually fully connected.

Numbers of nodes typically set by hand.



Multilayer Feed Forward

Layers are usually fully connected; numbers of nodes typically set by 
hand.

Single Hidden Layer is Most Common. back-propagation



Larger hypothesis space

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface



Recurrent Networks

Hopfield Networks -

• contain bidirectional connections (units are inputs and outputs)

• stimulus results in the networks settling into an activations pattern 
that most closely resembles a training example

• N units can store 0.138 N training examples.

Boltzmann Machines -

• like Hopfield Networks, but contain hidden units

• activation functions are stochastic (functions based on a probability 
that a unit exhibits a 1 based on the total weighted unit)



Applied Neural Networks

Handout.


