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Neural Network Example

Consider our Boundary Following Agent with the following Production
System.

Draw out a TLU Network that encodes this rules set.
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Least Squared Error

A common way to train a TLU is through an error function.

We define:
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where:
— d;(X;)is the outcome we want for X;
— [i(Xj) is the outcome we get.

Often we write these functions as ; and ﬁ

We then minimize €




Gradient Descent

- If @ (the threshold) is rolled into the weights, then the value of ¢
depends on the weights.

(Since these determine the value of f;)

- We minimize by looking at the gradient of € with respect to the
weights. ..

- ...and then altering the weights to move ¢ down the gradient.

- Eventually this gradient descent will take us down to the

minimum value of €.




Batch vs. Incremental Training

- The computation of € is complicated by the fact that its value
depends on all the X; in ©.

- Often it is easier to do the calculation for one X;, adjust the
weights to move down the gradient, and then start over with
another X .

- Thus we do the learning incrementally, taking each member of ©
in an order (called ). ).

- The incremental version only ever approximates the result of
doing it “properly” (the batch way), but often it is a good
approximation.

- Here we will just look at the incremental version.




Gradient of €

- When we have a single input vector X, with output f and desired

output d, the error is:

e=(d—f)

- The gradient of € with respect to the weights is
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- Since € depends on W through

s=X-W

it follows that:
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- From our definition of error:

- Furthermore we can write:
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- This seems to give us a way of working out what the gradient is.

- However, we have a problem.




(s

- The problem is that the TLU output f, cannot be differentiated.
- Most times we vary s a little we get no change in f.
- Sometimes, though, we get a big change (from 0 to | or vice-versa).
- There are several ways around this.
® |gnore the threshold and set f = s.

® Replace the threshold function with something we can differentiate
or otherwise find the gradient of.




The Widrow-Hoff procedure

Let's try and adjust the weights so that:
® FEvery training vector labeled with a | produces a dot product of |

® Every training vector labeled with a 0 produces a dot product of
-1.

Then, with

f=s

the incremental squared error is:
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This makes the gradient:
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If we want to then move the weight vector down the gradient, we can
set the new value of the weight vector as:

Wi=W+c(d—f)X

The factor of 2 is combined into the learning rate parameter c.

As always this controls the speed of the adjustment by determining
the fraction of X added to W.




® Whenever the error

(d —f)
is positive, then we add a fraction of the input into the weight.

® This increases X - W, and so decreases

(d —f)

® |[f the error is negative we subtract a fraction of the input and reverse
the effect.

® Once we have found the best set of weights, we can go back to using
the threshold function.




The generalized Delta procedure

® Another way to handle the threshold function is to replace it with
something we can differentiate.
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This function is known as a sigmoid.:
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With this function, we have the partial derivative:
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® This gives us another rule for changing weights:
W=W+c(d—f)f(1—f)X
® This compares to the Widrow-Hoff procedure as follows:
InW-H,d is | or -1.In generalized Delta it is | or O.

In W-H, f is equal to s. In generalized Delta, f is the output of
the sigmoid function.

Generalized Delta has the extra term f(1 — f)

With the sigmoid, f(1 — f) varies in value from 0 to |I.

® |t has value O when fis O or |.

® [t has maximum value of 0.25 when f has value 0.5 (and the input to
the sigmoid is 0).




One can think of the sigmoid as a “fuzzy boundary”.

When the input is a long way from the boundary, f(1 — f)hasa
value close to 0.

Thus hardly any adjustment is made to the weights.

When the input is closer to the boundary, then weight changes are
more significant.

These changes are always to reduce the error.

Once the weights are established, we can go back to using the step
function.




A general approach

Both these techniques have done the same thing.

They have replaced something we couldn't find the slope of with
something we could.

This obviously trains the weights approximately.
However, it seems that the approximation is often good enough.

In any case, we are interested in performance on non-training
examples.




The error-correction procedure

® Another approach keeps the original threshold function.

® We then forget about differentiation and just adjust the weights when
the TLU gives a classification error.

® In other words we make a change when:
(d =)
has value | or -1.
® This time the weight change rule is:
w:=W+c(d—-f)X
(remember c is the learning rate parameter)

® Just as before, the change tends to reduce the error.




Comparing this with Widrow-Hoff, we note that both d and f are
either O or |.

Whereas inW-H,dis | or -1 and f = s.

If there is a W that gives a correct output for all X € ©

® Then after a finite number of adjustments, this error-correction
procedure will find this weight vector.

Thus the process will terminate, making no more weight adjustments.

For nonlinearly separable sets of input vectors, the procedure will not
terminate.




Network Structures

Two kinds of larger Neural Network Structures:
|. feed-forward networks - acyclic

® contains “hidden” layers and inputs.

2. recurrent networks - cyclic

® dynamic systems - with oscillations and chaotic behavior

® can exhibit short-term memory




Hidden Units

Activation of Unit 5 is based on the weighted outputs of Unit 3 and 4.
Units 3 and 4 represent the hidden units.

Activation depends on the Unit (can use the sigmoid function)
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Numbers of nodes typically set by hand.

Input units

Output units
Hidden units



Multilayer Feed Forward

Layers are usually fully connected; numbers of nodes typically set by
hand.

Single Hidden Layer is Most Common. back-propagation

Output units a;

Hidden units

Input units




Larger hypothesis space

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface




Recurrent Networks

Hopfield Networks -

® contain bidirectional connections (units are inputs and outputs)

® stimulus results in the networks settling into an activations pattern
that most closely resembles a training example

® N units can store 0./38 N training examples.

Boltzmann Machines -
® |ike Hopfield Networks, but contain hidden units

® activation functions are stochastic (functions based on a probability
that a unit exhibits a | based on the total weighted unit)




Applied Neural Networks

Handout.




