
A Guided Genetic Algorithm for the Planning in Lunar Lander Games

Zhangbo Liu
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C, V6T 1Z4, Canada

email: zephyr@cs.ubc.ca

KEYWORDS
Guided Genetic Algorithm, Reinforcement Learning,
Planning, Games

ABSTRACT

We propose a guided genetic algorithm (GA) for plan-
ning in games. In guided GA, an extra reinforcement
component is inserted into the evolution procedure of
GA. During each evolution procedure, the reinforcement
component will simulate the execution of a series of ac-
tions of an individual before the real trial and adjust
the series of actions according to the reinforcement thus
try to improve the performance. We then apply it to a
Lunar Lander game in which the falling lunar module
needs to learn to land on a platform safely. We com-
pare the performance of guided GA and general GA as
well as Q-Learning on the game. The result shows that
the guided GA could guarantee to reach the goal and
achieve much higher performance than general GA and
Q-Learning.

INTRODUCTION

There are two main strategies for solving reinforcement
learning problems. The first is to search in the space
of behaviors in order to find one that performs well in
the environment. The second is to use statistical tech-
niques and dynamic programming methods to estimate
the utility of taking actions in states of the world (Kael-
bling et al. 1996). Genetic algorithms (GA) and Tempo-
ral Difference (TD-based) algorithms (e.g. Q-Learning)
belong to each of the two categories, respectively.
Both GA and TD-based algorithms have advantages and
disadvantages. GA leads to very good exploration with
its large population that can be generated within a gen-
eration but weak exploitation with elitism selection op-
erator, because its other two operators, the crossover
and mutation operators are usually randomly working.
TD-based algorithms use two strategies to solve prob-
lems with continuous space which are discretization and
function approximation. It usually faces the curse of di-
mensionality when using discretization. With function
approximation it is said to be able to alleviate such a

problem but might be stuck into certain local optima.
In this paper, we first investigate the GA as well as Q-
Learning approach on the Lunar Lander game. Then
we propose the guided GA by inserting a reinforcement
component into the evolution procedure of GA. Since
general GA uses random crossover and mutation opera-
tions, its performance is quite unstable. Guided GA is
designed to achieve higher efficiency by involving the re-
ward concept of reinforcement learning into general GA
while keep all components of general GA unchanged so
that the extension from general GA to guided GA is
easy to achieve.
The remainder of this paper is organized as follows. In
section 2 we introduce research work that is relevant to
this paper. In section 3 we describe the Lunar Lander
game as well as alternative approaches for the problem
implemented with general GA and Q-Learning. In sec-
tion 4 we present the guided GA approach for the prob-
lem. The results of the experiment are shown in section
5 following by the conclusions.

RELATED WORK

Reinforcement Learning for Continuous State-
Action Space Problems

The issue of using reinforcement learning to solve contin-
uous state-action space problem has been investigated
by many researchers. And game is actually an ideal test
bed.
There are a few well known benchmark problems in the
reinforcement learning domain such as Mountain Car
(Moore and Atkeson 1995), Cart-Pole (Barto et al. 1983)
and Acrobot (Boone 1997). In the Mountain Car prob-
lem, the car must reach the top of the hill as fast as
possible and stop there. This problem is of dimension
2, the variables being the position and velocity of the
car. The Cart-Pole is a 4-dimensional physical system
in which the cart has to go from the start point to the
goal and keep the orientation of its pole vertical within a
certain threshold when it reaches the goal. The Acrobot
problem is also a 4-dimensional problem which consists
of a two-link arm with one single actuator at the elbow.
The goal of the controller is to balance the Acrobot at



its unstable, inverted vertical position, in the minimum
time. Another implementation described in (Ng et al.
2004) made an autonomous inverted helicopter flight.
Two main strategies here are discretization and func-
tion approximation. For the first strategy, discretization
techniques have been widely pursued and provide con-
vergence results and rates of convergence (Munos and
Moore 2002), (Monson et al. 2004). For the second
strategy, several approaches come out on how to config-
ure with multiple function approximators (Gaskett et al.
1999), (Smart and Kaelbling 2000).

Reinforcement Learning + Genetic Algorithm

Some researches on combining the advantages of GA and
TD-based reinforcement learning have been proposed in
(Chiang et al. 1997), (Lin and Jou 1999). However, both
of them use gradient decent learning method which is
complex and the learning speed is always too slow to
achieve the optimum solution. The idea of guided GA
we propose is inspired by (Ito and Matsuno 2002), in
which Q-Learning is carried out and fitness of the genes
is calculated from the reinforced Q-table. However, in
guided GA, instead of using Q-table, we directly insert a
reinforcement component into the evolution procedure
of the general GA so that the large Q-table and hid-
den state problem are avoided. In (Juang 2005), Juang
proposed another approach to combine online clustering
and Q-value based GA for reinforcement fuzzy system
design. Compared with the approach described in that
paper, guided GA is much simpler in structure and eas-
ier to implement while the problem we address in this
paper has a higher dimension than that of in (Juang
2005).

THE LUNAR LANDER GAME

The Lunar Lander Game

The Lunar Lander game is actually a physically-based
problem in which the controller needs to gently guide
and land a lunar module onto a small landing platform,
as shown in Figure 1. The space is a 400 × 300 pixel
rectangle area. It simulates the real environment on the
moon that the lunar module has mass and is influenced
by the gravity on the moon (1.63m/s2). The controller
here has 5-dimensional state spaces which are: position
(x, y), velocity (ẋ, ẏ) and orientation (θ). The controller
is able to do four actions: rotate left, rotate right, thrust
and do nothing (drift).
When agent becomes the controller instead human
player, the problem becomes to an advanced path find-
ing issue. The successful landing requirement consists
the checking of the following variables when any part of
the lunar module reach the ground:

• Distance from the pad

Figure 1: The Lunar Lander Game

• Speed

• Degrees of rotation

All of them must be below certain thresholds to achieve
safe landing, otherwise it will crash and the game will
start from beginning again. The game runs in real time
thus it is a good test bed for problems with continuous
state and discrete action spaces.

Alternative Approaches

Genetic Algorithm
One alternative approach to this problem is using ge-
netic algorithm (GA) for planning. For a complete in-
troduction to GA please refer to (Goldberg 1989). The
GA approach to this problem follows the steps below in
one epoch to try to achieve the goal.
First, the genome is encoded as a series of genes each
of which contains an action-duration pair, as shown in
Figure 2. The duration here represents the period of
time that each specific action is applied. At the begin-
ning, all the actions and durations in those genes in one
genome are randomly assigned. A number of genomes
will be created together in one generation.

Figure 2: Genome encoding

Next, the controller starts a trial according to the
action-duration series in each genome and uses a fit-
ness function to evaluate their utilities when they crash.
There might be many approaches to build the fitness



function to this problem. In (Buckland and LaMothe
2002), Buckland and LaMothe suggested the following
fitness function:

Fitness = w1 · disF it + w2 · rotF it + w3 · airT ime (1)

where disFit and rotFit represent the value function of
the position and the orientation feature separately. The
airTime is the time period that the lunar module stays
in the air which is defined as na/(v + 1) where na is
the number of actions it does ignoring the duration and
v is the velocity at landing. wi are the weights that
are applied to balance the function. Those weights are
quite important and must be carefully decided in order
to achieve a good performance. If the safe landing re-
quirement is satisfied, the fitness value will be assigned
with a predefined Big Number instead of calculating
using the equation (1).
After one trial for all genomes of the current generation,
the fitness value of each genome will be calculated out
and the best n genomes with the highest fitness value
will remain and put into the next generation. Other
genomes of the next generation are created by using
crossover and mutation operators. The crossover opera-
tor works by stepping through each gene in its parents’
genome and swapping them at random to generate their
offspring. The mutation operator runs down the length
of a genome and alters the genes in both action and
duration according to the mutation rate.
The operator will periodically do one epoch after an-
other until one genome’s result reaches the goal or the
number of generations exceeds the predefined maximum
value. An implementation of a GA solution to this prob-
lem can be found in (Buckland and LaMothe 2002).

Q-Learning
Based on our experience, Q-Learning with only dis-
cretization won’t work for this problem. So we im-
plement a linear, gradient-descent version of Watkins’s
Q(λ) to this problem with binary features, ε-greedy pol-
icy, and accumulating traces described in (Sutton and
Barto 1998). Tile coding (Sutton and Barto 1998) is
also used to partition the continuous space into multi-
ple tilings.

THE GUIDED GENETIC ALGORITHM AP-
PROACH

The approaches we mentioned in the previous section
both have advantages and disadvantages. The GA is
simple to implement and is able to achieve the goal,
while its disadvantage is that all its actions are randomly
assigned so that its performance is quite unstable. The
basic concept of Q-Learning approach is also simple and
supposed to be efficient. However, for this game which
is a realtime continuous-state problem, Q-Learning with

discretization does not work and Q-Learning with func-
tion approximation is hard to accommodate. We design
the guided GA which incorporates the concept of reward
in Q-Learning into GA. Here we call our function ”rein-
forcement function” because unlike the reward function
in Q-Learning whose values need to be summed to cal-
culate the Q-value (Q =

∑
rewards), the reinforcement

function here gets the immediate fitness value and will
be extended to fitness function at the end of each epoch.
In the following subsections we first introduce the rein-
forcement function design for guided GA to this problem
then discuss the details of the algorithm.

Reinforcement Function Design

To model the reinforcement function is a very challeng-
ing work. It has to be smoothly transformed to the
fitness function of the general GA (equation (1)) at the
end of each epoch so that we can easily extend the gen-
eral GA to a guided GA without modifying the existing
fitness function. On the other hand, it should be prop-
erly defined to efficiently guide the agents to perform
better. We tried many different versions until finally
reaching a solution.
In equation (1) there are 3 parameters and we need to
modify two of them which are disFit and airTime in our
reward function. The main difference between equation
(1) and the reinforcement function is that in equation
(1), all lunar modules reach the ground (position.y = 0)
and each of them has an accumulator na whose value is
the number of actions they do during the whole pro-
cedure; while in the reinforcement function, the lunar
modules are in the air and they only focus on the next
action. Based on this difference, we build our reinforce-
ment function as follows:
We use disFitx to represent disFit in (1), then we build
disFity which is similar to disFitx but for y coordinate.
Then our distance function is:

disF it′ =

√
(disF itx)2 +

(disF ity)2

wy
(2)

where wy is used for balancing the weight between
disF itx and disF ity.
airTime, as mentioned in equation (1), is defined as
na/(v + 1). In our reinforcement function, na no longer
exists, while we find that a single defined function does
not work well all the time since on different stages our
focuses might be different. For example, when the lunar
module is high in the air we would pay more attention
on its horizontal position; while when it is close to the
ground it needs to slow down to prepare for landing. So
instead of simply redefining it as 1/(v + 1), we take the
vertical position into consideration and come with the
following definition:

\∗ Defining disF it′ and airT ime′ ∗\



if position.y < h1{
disF it′ = disF it′ × r;
if position.y < h2

airT ime′ = 1/(wt × v + 1); }
else airT ime′ = 1/(v + 1);

where h1 and h2 (h1 > h2) are values of height at which
we think should change our strategies and wt is the
weight that can help slow down the velocity of the lunar
module to very small values when they nearly reach the
ground. r is a scaling factor. Then the reward function
we build is:

R = w1 · disF it′ + w2 · rotF it + w3 · airT ime′ (3)

where wi and rotF it are the same as in (1).

Algorithm Description

In each epoch of the GA, the evolution of its genomes is
done by three operators: selection, crossover and mu-
tation. The selection is based on elitism, while the
crossover and mutation are by random, which leads to
the unstable performance of the general GA. In order
to better perform the evolution, we insert a reinforce-
ment component whose idea comes from the reward in
Q-Learning. There are two strategies to do this. The
first one is on-line updating which is similar to other
reinforcement learning algorithms. The second one is
off-line updating which updates the whole genome at
one time before each epoch. We choose the latter based
on the consideration of both the standard mechanism
of GA and the real time property of the problem. The
high-level description of the guided GA is shown below:

algorithm guided genetic;
begin

obtain last generation;
put a few best individuals directly into new

generation;
use crossover operator to generate new generation;
use mutate operator on the new generation;
evolve the new generation;

end

What we add here is the last step whose input is the
mutated new generation. Below is the procedure:

procedure evolve;
begin

for each individual i in the generation
for each gene in i’s action-duration series

get duration d, current state s;
from state s consider all possible actions a′i

with duration d, suppose s′i are
possible resulting states;

select a′ and s′ based on equation (3);

if s′ satisfies safe landing requirement
a ← a′;

else if a′ 6= a
a ← a′ with probability (1− ε);

update state;
end

where the greedy rate ε has the same meaning as the ε-
greedy policy in reinforcement learning. For any given
gene of an individual’s genome, there are 4 possible ac-
tions and numerous durations (in our implementation
for the problem the duration ranges from 1 to 30, which
means for any given state there are 120 possible states
in the next step). And we would only change the action
in action-duration pair so that for any given state there
are only 4 possible states in the next step.
We use the ε-greedy policy here, but unlike the so called
greedy genetic algorithm (Ahuja et al. 1995) which fo-
cuses on greedy crossover, guided GA is inspired by (Ito
and Matsuno 2002) in which the authors used Q-table to
integrate Q-Learning with GA. However, for our prob-
lem using Q-table won’t work because of the large state
space. Instead, we use the above method to directly
insert the reinforcement component into the evolution
procedure without saving any previous state or function
value in the memory.

EXPERIMENTAL DETAILS

Experimental Design and Results

We conducted an experiment to test the performance of
our guided GA and compared it with the general GA
and Q-Learning. For guided GA and general GA, we
made all variables the same for both of them to ensure
fairness. The parameters of our experiment were given
as follows:

1. Both of the two contained 100 individuals in one
generation. The maximum number of generations
was 500. It supposes to be failed if it did not
achieve the goal within 500 generations and then
would start from the beginning again. The length
of chromosome was 50. The crossover rate was 0.7
and the mutation rate was 0.05. The ε was 0.1.

2. The thresholds for the safe landing requirements
were:

(a) Distance = 10.0
(b) Velocity = 0.5
(c) Rotation = π/16

3. To define the values of weights was the most diffi-
cult work for the experiment. Below are the best
value settings that were selected by empirical study:

(a) w1 = 1, w2 = 400, w3 = 4 (got from (Buckland
and LaMothe 2002))



(b) wy = 3, wt = 6, r = 1.7, h1 = 100, h2 = 30

We also introduced the same feature of guided GA to
Q-Learning implementation for building its reward func-
tion.
To learn to solve a problem by reinforcement learning,
the learning agent must achieve the goal (by trial-and-
error) at least once (Lin 1992). Testing results showed
that general and guided GA were able to achieve the
goal almost every time. However, it was very hard for
Q-Learning to complete the task. Besides the general
reasons such as function approximation strategy often
falls into local optimal and Q-Learning converges too
slowly, we believed that another important reason was
in this realtime problem the control of duration of the
action is crucial. GAs could evolve the durations with
the crossover and mutation operation. But Q-Learning
could not. Adding duration together with action into
the state space might make the state space extremely
huge, thus lead to Q-Learning’s fail. Based on this fact,
we only compared the data we got from the testings
using general GA and guided GA. The experimental re-
sults that we ran both of general and guided GA for 25
trials are shown in Figure 3.

Figure 3: Experimental Results

From the results we can observe that for most of the time
the performance of the guided GA were much higher
than the general GA except the last trial. Figure 4
shows the fitness that both of them gained during all
the generations before the last generation in the 13th
trial. According to the data, both the highest and the
average fitness of guided GA were higher than general
GA.

Analysis

Some questions came out when we observed the
data of the results. First, what was the goal’s fit-
ness/reinforcement value? Second, why the highest fit-
ness of guided GA was much higher than that of general
GA while they achieved the goal in very close steps?
Third, why guided GA lost in the last trial while per-
formed much better in previous trials?

Figure 4: Fitness Gained in the 13th Trial

We used the thresholds for the problem to calculate
out the fitness value and found that the fitness value
of the goal was just no more than 900. The reason why
those individuals with very high fitness values failed to
achieve the goal was that there were three parameters in
the fitness/reinforcement function. No matter how high
the fitness value that certain individual gained, as long
as there was one parameter whose value was above the
threshold then it failed to achieve the goal. So it was
possible that one individual with a low fitness achieved
the goal in the next generation by randomly evolving
its genome which accidentally hit all the thresholds and
triggered a sudden success. And that was the reason
that sometimes the individual who achieved the goal
was not the one who performed the best in the previous
state.
Both general and guided GA involved randomness that
brought the uncertainty to the procedure. So the possi-
ble explanation to the third question was that the ran-
domness caused a sudden success to the general GA
before the guided GA got out of certain local optimal
states.
Although the highest fitness in each step did not make
much sense to us, the average fitness were useful because
higher average fitness demonstrated a better chance for
the whole generation to achieve the goal. For all the
trials we observed, the average fitness of guided GA were
much higher than the average fitness of general GA.

CONCLUSION AND FUTURE WORK

In this paper we proposed a guided genetic algorithm by
adding a reinforcement component into GA. We success-
fully applied the guided GA for the planning of Lunar
Lander game. Based on the experimental results, guided
GA achieved much higher performance than general GA
and Q-Learning.
The guided GA which we proposed in this paper demon-
strated very good performance. However, it still has
some shortcomings and has the potential to be im-
proved. Possible improvement direction are: first, figure
out a method that could update the reinforcement func-
tion more effectively; second, optimize the procedure of



crossover and mutation; last but not the least, find out
some rules to model the reinforcement function without
doing trial-and-error.

ACKNOWLEDGEMENT

We would thank Dr. David Poole, Dr. Michiel van
de Panne, Dr. Chris Gaskett and Joel Lanir for their
invaluable suggestions on our work. We also appreciate
peer reviewers for their precious comments.

REFERENCES

R. Ahuja, J. Orlin, and A. Tivari. A greedy genetic algo-
rithm for the quadratic assignment problem. Working pa-
per 3826-95, Sloan School of Management, MIT, 1995.

A.G. Barto, R.S. Sutton, and C.W Anderson. Neurolike
adaptive elements that can learn difficult control prob-
lems. IEEE. Trans. on System Man and Cybernetics, 1983.

G. Boone. Minimum-time control of the acrobot. Interna-
tional Conference on Robotics and Automation, 1997.

M. Buckland and A. LaMothe. AI techniques for game pro-
gramming. Premier Press, 2002.

C.K. Chiang, H. Y. Chung, and J. J. Lin. A self-learning
fuzzy logic controller using genetic algorithms with rein-
forcements. IEEE Transactions on Fuzzy Systems, 1997.

C. Gaskett, D. Wettergreen, and A. Zelinsky. Q-learning
in continuous state and action spaces. In Australian Joint
Conference on Artificial Intelligence, pages 417–428, 1999.

D.E. Goldberg. Genetic Algorithm in Search, Optimiza-
tion and Machine Learning. Kluwer Academic Publishers,
1989.

K. Ito and F. Matsuno. A study of reinforcement learning
for the robot with many degrees of freedom - acquisition
of locomotion patterns for multi-legged robot. In ICRA
’02. IEEE International Conference on Robotics and Au-
tomation, pages (4):3392–3397, 2002.

C.F. Juang. Combination of online clustering and q-value
based ga for reinforcement fuzzy system design. IEEE
Transaction on Fuzzy Systems, 2005.

L.P. Kaelbling, M.L. Littman, and A.P. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

C.T. Lin and C.P. Jou. Controlling chaos by ga-based rein-
forcement learning neural network. IEEE Transaction on
Neural Networks, 1999.

L.J. Lin. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Mach. Learn., 8
(3-4):293–321, 1992.

C.K. Monson, D. Wingate, K.D. Seppi, and T.S. Peterson.
Variable resolution discretization in the joint space. In-
ternational Conference on Machine Learning and Appli-
cations, 2004.

A.W. Moore and C.G. Atkeson. The parti-game algorithm
for variable resolution reinforcement learning in multi-
dimensional state-spaces. Mach. Learn., 21(3):199–233,
1995.

R. Munos and Andrew Moore. Variable resolution discretiza-
tion in optimal control. Mach. Learn., 49(2-3):291–323,
2002.

A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,
B. Tse, E. Berger, and E. Liang. Inverted autonomous
helicopter flight via reinforcement learning, 2004.

W.D. Smart and L.P. Kaelbling. Practical reinforcement
learning in continuous spaces. In Proc. 17th International
Conf. on Machine Learning, pages 903–910. Morgan Kauf-
mann, San Francisco, CA, 2000.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. Number 206-214. MIT Press, Cambridge,
MA, 1998.

BIOGRAPHY

ZHANGBO LIU studies computer science at the Univer-
sity of British Columbia, Canada. His main research in-
terests are human-computer interaction and artificial intelli-
gence in games.


